

Public Advisory Committee Meeting

April 1, 2020

Agenda

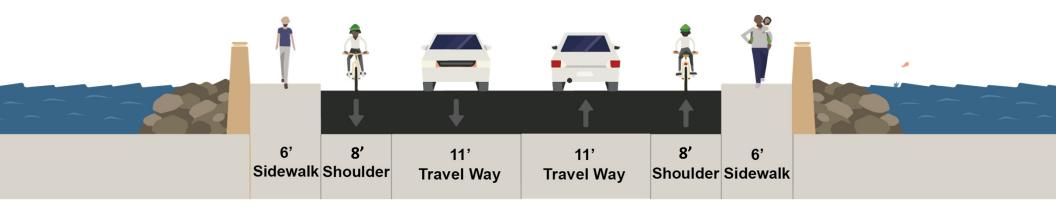
- Recap of Progress to Date
- Type, Size and Location Study Conclusions
- Review of Four Alternatives
- Update on Consultation
- Next Steps

Seabrook-Hampton Bridge looking northwest

Coordination To Date

- Meetings to date
 - ✓4 PAC Meetings
 - ✓2 Public Informational Meetings
 - ✓ Meeting with maritime users
 - ✓ Meeting with abutters
- Reviewing Agencies
 - ✓ US Coast Guard
 - ✓ US Army Corps of Engineers
 - ✓ NH Division of Historical Resources
 - ✓ National Oceanic and Atmospheric Administration
 - ✓ US Fish and Wildlife Service
 - ✓ Additional Environmental Agencies
- These have informed key decisions throughout the project's development

Alternatives

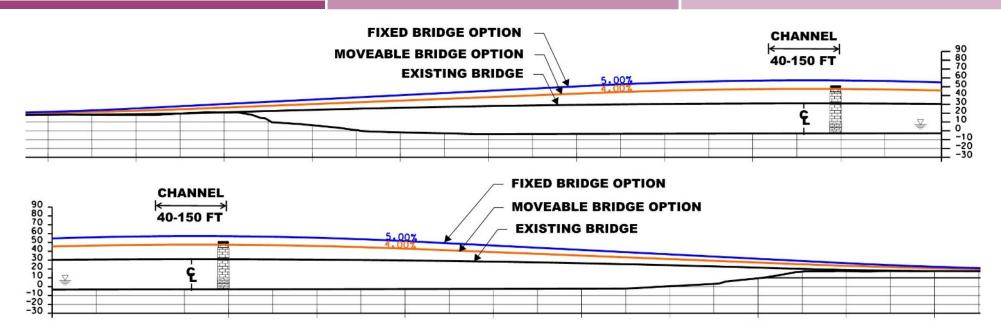

- Initially, three alternatives considered:
 - Rehabilitation (with Widened Bridge)
 - Replacement with Bascule Bridge
 - Replacement with Fixed Bridge
- Through Coordination with NH Division of Historic Resources, a fourth alternative was added:
 - Twin Bridge (with Rehabilitated Bridge)
- All meet project Purpose and Need

Typical Roadway Section

- 2 travel lanes
- 8' shoulders
- 6' sidewalks with bumpouts

Roadway Alignments

Eastern Alignment



Navigational Vertical Clearance

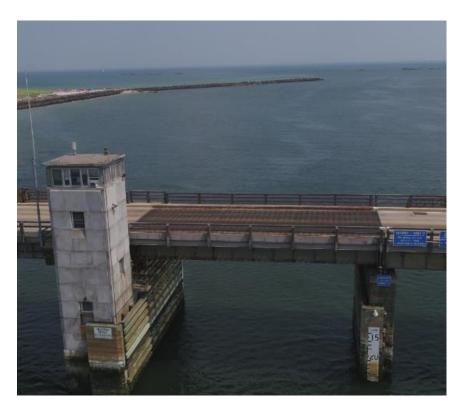
Lines shown are roadway surface at center of roadway

- Replacement with Fixed 48' Vertical Underclearance at Channel
- Replacement with Bascule 34' Vertical Underclearance at Channel
- Existing Bridge 18' Posted Vertical Underclearance

Questions

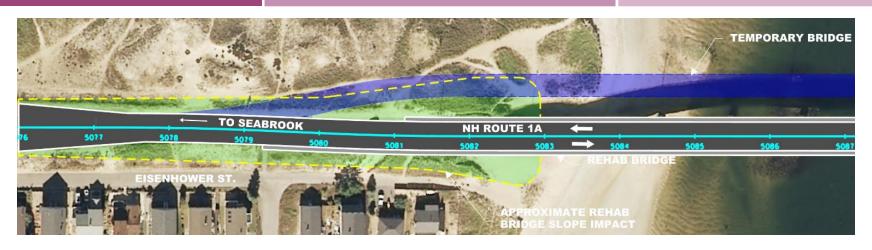
• Before moving to the next section, please ask any questions you may have regarding progress to date

Type, Size and Location Study


- TS&L identifies Replacement with Fixed Bridge as Preferred Alternative because:
 - Accommodates widening of navigational channel under bridge
 - Allows vertical clearance for all vessels documented to have entered the harbor
 - Accommodates Currituck (US Army Corps of Engineers dredge vessel)
 - Avoids impacts to navigational channel within Hampton Harbor
 - Eliminates traffic delays
 - Shortest construction duration of four alternatives
 - Lowest life cycle cost of four alternatives

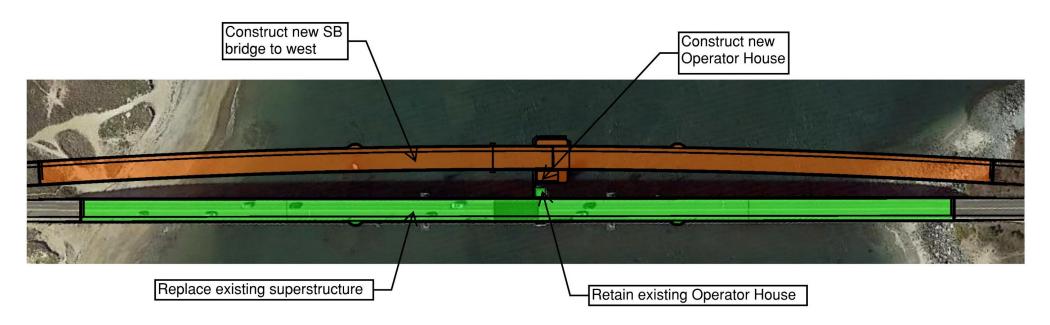
Rehabilitation (with Widened Bridge)

- 50' roadway
- Requires temporary bridge
- Approach roadway impacts minimized
- Retains operator house
- Alters overall form of existing bridge
- Extensive modifications to structure and new mechanical and electrical systems
- Would result in adverse effect under Section 106
- No improvement to navigational channel
- Vertical underclearance unchanged (20' in closed position)
- Traffic movement delayed when opened
- Life cycle cost = \$98 million



Bascule span, looking east

Rehabilitation (with Widened Bridge)



Twin Bridge (with Rehabilitated Bridge)

 Alternative considered based on comments from NH Division of Historical Resources

Aerial Plan of Twin Bridge Alternative

Twin Bridge (with Rehabilitated Bridge)

- New bascule bridge west of existing
- Rehabilitates existing substructure replaces superstructure due to deterioration
- Splits traffic onto two bridges
- Each bridge has 30'-6" roadway width
- Width of navigational channel unchanged (40')

- Length of restricted channel increased
- Impacts to navigational channel within Hampton Harbor – may require blasting
- Vertical underclearance unchanged (20')
- Traffic movement delayed when opened
- Would result in adverse effect under Section 106
- Life cycle cost = \$128 million

Replacement with Bascule Bridge

- Modern version of existing bridge
- Steel bascule span
- Proposed underclearance increased to 34', reducing required lifts by 55%
- Traffic movement delayed when opened

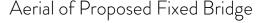
- Navigational channel width increased to 80' at crossing
- Impacts to navigational channel within Hampton Harbor – may require blasting
- Results in adverse effect under Section 106
- Life cycle cost = \$115 million

Aerial of Proposed Bascule Bridge

Repl. with Fixed Bridge - Preferred Alternative HAMPTON HARBOR BRIDGE

- Fixed bridge alignment "tucked in" moved closer to existing bridge to eliminate impacts to Harbor Channels
 - Underclearance increased from 44' to 48' but engineering refinement allows for minimal increase in structure height

Alignment of Replacement Alternatives


Repl. with Fixed Bridge - Preferred Alternative HAMPTON HARBOR BR

- Sufficient vertical clearance for vessels
- Widens channel to 150' and fewer obstructions for small vessels
- Avoids impacts to navigational channel within Hampton Harbor
- Results in adverse effect under Section 106

- Shortest construction duration
- No vehicular delays due to bridge lifts
- Substantial reduction in cost
- Life cycle cost = \$71 million

Questions

- Before moving to the next section, please ask any questions you may have regarding
 - Preferred Alternative
 - Other Alternatives

Alternative Comparison Summary

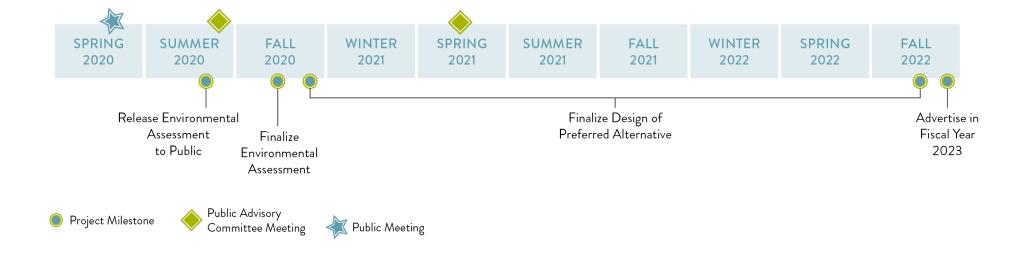
	Widened Rehab	Twin Bridge	Fixed Bridge	Bascule Bridge
Roadway Width	50′	2 x 30'-6"	50′	50'
Approach Roadway Impacts	Easterly	Westerly	Westerly	Westerly
No Temporary Bridge Required	•	•	•	•
Historic - Adverse Effect on Bridge	•	•	•	•
Navigational Channel Improvements	•	•	•	•
No Blasting Required	•	•	•	•
Future Utilities On Bridge	•	•	•	•
Reduced Traffic Delays with Bridge Operation	•	•	•	•
Construction Duration	3.5 Years	4 years	3 Years	3.5 Years

Alternative Cost Analysis

Alternative	Widened Rehab.	Twin Bridge	Fixed Bridge*	Bascule Bridge
Initial Construction Cost	\$85M	\$110M	\$67M-\$71M	\$101M
Life Cycle Cost – Constant Dollars	\$156M	\$212M	\$85M-\$90M	\$181M
Life Cycle Cost — Present Day Dollars	\$98M	\$128M	\$71M-\$74M	\$115M

^{*} Note: Range accounts for concrete and steel as options for girders.

Next Steps



- Further identify mitigation measures for loss of historic bridge
- Develop Memorandum of Agreement with NH Division Historic Resources and Consulting Parties
- Complete Biological Assessments and Essential Fish Habitat Assessment
- Hold Public Informational Meeting
- Prepare and release Draft Environmental Assessment and 4(f) Evaluation (summer 2020)
- Develop US Coast Guard Permits

Next Steps

