NH Route 152 over the North River Bridge Replacement Nottingham 40612

NHDES WETLANDS PERMIT APPLICATION

Submitted for:

NH Department of Transportation 7 Hazen Drive Concord, NH 03302

Prepared by:

GM2 Associates, Inc. 197 Loudon Road, Suite 310 Concord, NH 03301

April 2024

NH Route 152 over the North River Bridge Replacement Nottingham 40612

TABLE OF CONTENTS

NHDES Standard Dredge and Fill Wetlands Permit Application Form

USGS Location Map

Supplemental Narrative

Project Description

Existing Conditions / Wetland Resources

Wetland & Watercourse Impacts

Impaired Waters

Mitigation

Attachment A: Minor and Major Projects

Avoidance and Minimization Written Narrative

Natural Resource Agency Coordination Meeting Minutes

NHDES ARM Fund Wetland Payment Calculation

Wetland Delineation Report

FEMA National Flood Hazard Layer FIRMette

USGS Watershed Map

Stream Crossing Rules (Env-Wt 900) Technical Report

Stream Crossing Worksheet

Hydraulic Design Report

NHB DataCheck Results Letter

NHB Correspondence

NH Fish & Game Department Correspondence

USFWS IPaC Report

Northern Long-Eared Bat No Effect Determination

No Historic Properties Affected Memo

Appendix B - NH General Permits - USACE Section 404 Checklist

Photographs

Construction Sequence

Wetland Plans

STANDARD DREDGE AND FILL WETLANDS PERMIT APPLICATION Water Division / Land Resources Management Check the Status of your Application

RSA/Rule: RSA 482-A/Env-Wt 100-900

APPLICANT'S NAME:

TOWN NAME:

			File No.:
Administrative	Administrative	Administrative	Check No.:
Use Only	Only	Only	Amount:
			Initials:

A person may request a waiver of the requirements in Rules Env-Wt 100-900 to accommodate situations where strict adherence to the requirements would not be in the best interest of the public or the environment but is still in compliance with RSA 482-A. A person may also request a waiver of the standards for existing dwellings over water pursuant to RSA 482-A:26, III(b). For more information, please consult the <u>Waiver Request Form</u>.

SEC	CTION 1 - REQUIRED PLANNING FOR ALL PROJECTS (Env-Wt 306.05; RSA 482-A:3, I(d)(2))				
Plea <u>Res</u> pro	Please use the <u>Wetland Permit Planning Tool (WPPT</u>), the Natural Heritage Bureau (NHB) <u>DataCheck Tool</u> , the <u>Aquatic</u> <u>Restoration Mapper</u> , or other sources to assist in identifying key features such as: <u>Priority Resource Areas (PRAs</u>), <u>protected species or habitats</u> , coastal areas, designated rivers, or designated prime wetlands.				
Has	s the required planning been completed?	🗌 Yes 📃 No			
Doe	es the property contain a PRA? If yes, provide the following information:	🗌 Yes 🗌 No			
•	Does the project qualify for an Impact Classification Adjustment (e.g. NH Fish and Game Department (NHFG) and NHB agreement for a classification downgrade) or a Project-Type Exception (e.g. Maintenance or Statutory Permit-by-Notification (SPN) project)? See Env-Wt 407.02 and Env-Wt 407.04.	🌅 Yes 📃 No			
•	Protected species or habitat? If yes, species or habitat name(s): NHB Project ID #: 	🗌 Yes 🗌 No			
•	Bog?	🗌 Yes 🗌 No			
•	Floodplain wetland contiguous to a tier 3 or higher watercourse?	🗌 Yes 🗌 No			
•	Designated prime wetland or duly-established 100-foot buffer?	🗌 Yes 🗌 No			
•	Sand dune, tidal wetland, tidal water, or undeveloped tidal buffer zone?	🗌 Yes 🗌 No			
ls t	he property within a Designated River corridor? If yes, provide the following information:	🗌 Yes 🗌 No			
•	Name of Local River Management Advisory Committee (LAC):				
•	A copy of the application was sent to the LAC on Month: Day: Year:				

For dredging projects, is the subject property contaminated?If yes, list contaminant:	Yes No
Is there potential to impact impaired waters, class A waters, or outstanding resource waters?	Yes No
For stream crossing projects, provide watershed size (see <u>WPPT</u> or Stream Stats):	
SECTION 2 - PROJECT DESCRIPTION (Env-Wt 311.04(i))	
Provide a description of the project and the purpose of the project, the need for the proposed impacts t	o jurisdictional
areas, an outline-of the scope of work to be performed, and whether impacts are temporary or permane	ent.
SECTION 3 - PROJECT LOCATION	
Separate wetland permit applications must be submitted for each municipality within which wetland im	pacts occur.
ADDRESS:	
TOWN/CITY:	
TAX MAP/BLOCK/LOT/UNIT:	
US GEOLOGICAL SURVEY (USGS) TOPO MAP WATERBODY NAME:	

(Optional) LATITUDE/LONGITUDE in decimal degrees (to five decimal places):

1.4

SECTION 4 - APPLICANT (DESIRED PERM If the applicant is a trust or a company,	MIT HOLDER) then complet	INFORMATION (Env-Wt 311.04 e with the trust or company inf	(a)) ormation.		
NAME: NH Department of Transportat	tion (Contact	: Jason Tremblay, P.E.)			
MAILING ADDRESS: 7 Hazen Drive, PC	Box 483				
TOWN/CITY: Concord			STATE: NH	ZIP CODE: 0330	
EMAIL ADDRESS: Jason.A.Tremblay@@	dot.nh.gov				
FAX:		PHONE: 603-271-2731			
ELECTRONIC COMMUNICATION: By initi this application electronically. JAT	ialing here, I h	ereby authorize NHDES to com	municate all r	natters relative to	
SECTION 5 - AUTHORIZED AGENT INFO	RMATION (En	v-Wt 311.04(c))			
LAST NAME, FIRST NAME, M.I.: Riordan	, Jennifer M.				
COMPANY NAME: GM2 Associates, In	с.				
MAILING ADDRESS: 197 Loudon Road,	Suite 310			-	
TOWN/CITY: Concord			STATE: NH	ZIP CODE: 0330	
EMAIL ADDRESS: jriordan@gm2inc.cor	n				
FAX:		PHONE: 603-856-7854			
ELECTRONIC COMMUNICATION: By initi this application electronically.	ialing here, I h NR	ereby authorize NHDES to com	municate all r	natters relative to	
SECTION 6 - PROPERTY OWNER INFORM If the owner is a trust or a company, the Same as applicant	MATION (IF D en complete v	IFFERENT THAN APPLICANT) (E	nv-Wt 311.04 mation.	(b))	
NAME:					
MAILING ADDRESS:					
TOWN/CITY:			STATE:	ZIP CODE:	
T THE R PARTY OF THE PARTY OF T					
EMAIL ADDRESS:					

.

SECTION 7 - RESOURCE-SPECIFIC CRITERIA ESTABLISHED IN Env-Wt 400, Env-Wt 500, Env-Wt 600, Env-Wt 700, OR
Env-Wt 900 HAVE BEEN MET (Env-Wt 313.01(a)(3))

Describe how the resource-specific criteria have been met for each chapter listed above (please attach information about stream crossings, coastal resources, prime wetlands, or non-tidal wetlands and surface waters):

SECTION 8 - AVOIDANCE AND MINIMIZATION

Impacts within wetland jurisdiction must be avoided to the maximum extent practicable (Env-Wt 313.03(a)).* Any project with unavoidable jurisdictional impacts must then be minimized as described in the <u>Wetlands Best Management</u> <u>Practice Techniques For Avoidance and Minimization</u> and the <u>Wetlands Permitting: Avoidance, Minimization and</u> <u>Mitigation fact sheet</u>. For minor or major projects, a functional assessment of all wetlands on the project site is required (Env-Wt 311.03(b)(10)).*

Please refer to the application checklist to ensure you have attached all documents related to avoidance and minimization, as well as functional assessment (where applicable). Use the <u>Avoidance and Minimization Checklist</u>, the <u>Avoidance and Minimization Narrative</u>, or your own avoidance and minimization narrative.

*See Env-Wt 311.03(b)(6) and Env-Wt 311.03(b)(10) for shoreline structure exemptions.

SECTION 9 - MITIGATION REQUIREMENT (Env-Wt 311.02)

If unavoidable jurisdictional impacts require mitigation, a mitigation <u>pre-application meeting</u> must occur at least 30 days but not more than 90 days prior to submitting this Standard Dredge and Fill Permit Application.

Mitigation Pre-Application Meeting Date: Month: Day: Year: 1/17/2024

(N/A - Mitigation is not required)

SECTION 10 - THE PROJECT MEETS COMPENSATORY MITIGATION REQUIREMENTS (Env-Wt 313.01(a)(1)c)

Confirm that you have submitted a compensatory mitigation proposal that meets the requirements of Env-Wt 800 for all permanent unavoidable impacts that will remain after avoidance and minimization techniques have been exercised to the maximum extent practicable: I confirm submittal.

(N/A – Compensatory mitigation is not required)

SECTION 11 - IMPACT AREA (Env-Wt 311.04(g))

For each jurisdictional area that will be/has been impacted, provide square feet (SF) and, if applicable, linear feet (LF) of impact, and note whether the impact is after-the-fact (ATF; i.e., work was started or completed without a permit).

NHDES-W-06-012

For intermittent and ephemeral streams, the linear footage of impact is measured along the thread of the channel. *Please note, installation of a stream crossing in an ephemeral stream may be undertaken without a permit per Rule Env-Wt 309.02(d), however other dredge or fill impacts should be included below.*

For perennial streams/rivers, the linear footage of impact is calculated by summing the lengths of disturbances to the channel and banks.

Permanent (PERM.) impacts are impacts that will remain after the project is complete (e.g., changes in grade or surface materials).

Temporary (TEMP.) impacts are impacts not intended to remain (and will be restored to pre-construction conditions) after the project is completed.

		PERM. PERM. PERM. TEMP. TEMP.	TEMP.				
JOK		SF	LF	ATF	SF	LF	ATF
	Forested Wetland						
Wetlands	Scrub-shrub Wetland						
	Emergent Wetland						
	Wet Meadow						
	Vernal Pool						
	Designated Prime Wetland						
	Duly-established 100-foot Prime Wetland						
	Buffer						
	Intermittent / Ephemeral Stream						
се	Perennial Stream or River						
ırfa	Lake / Pond						
Su	Docking - Lake / Pond						
	Docking - River						
S	Bank - Intermittent Stream						
ank	Bank - Perennial Stream / River						
Bi	Bank / Shoreline - Lake / Pond						
	Tidal Waters						
	Tidal Marsh						
lal	Sand Dune						
Tic	Undeveloped Tidal Buffer Zone (TBZ)						
	Previously-developed TBZ						
	Docking - Tidal Water						
	TOTAL						
SEC	TION 12 - APPLICATION FEE (RSA 482-A:3, I)						
	MINIMUM IMPACT FEE: Flat fee of \$400.						
	NON-ENFORCEMENT RELATED, PUBLICLY-FUN	DED AND SU	JPERVISED	O RESTORAT	ION PROJEC	CTS, REGARD	LESS OF
	IMPACT CLASSIFICATION: Flat fee of \$400 (ref	er to RSA 48	2-A:3, 1(c)	for restricti	ons).	,	
	MINOR OR MAJOR IMPACT FEE: Calculate usin	g the table l	pelow:		•		
	Permanent and tempora	ry (non-dock	(ing):	SF		× \$0.40 =	\$
	Seasonal de	ocking struc	ture:	SF		× \$2.00 =	\$
	Permanent de	ocking struc	ture:	SF		× \$4.00 =	\$
	Projects p	roposing sho	oreline stru	uctures (incl	uding docks) add \$400 =	\$
Total = \$						\$	
7	The application fee for minor or major impact is	s the above o	calculated	total or \$40	0, whicheve	r is greater =	\$

\$1,936.40

NHDES-W-06-012

Minimum Impact Project		Minor Project	Project Major Project				
SECTION 14	4 - REQUIRED CERTIFICATIONS	(Env-Wt 311.11)	\$11.11)				
Initial each	box below to certify:						
Initials: JMP	To the best of the signer's knowledge and belief, all required notifications have been provided.						
Initials: JMP	The information submitted on or with the application is true, complete, and not misleading to the best of the signer's knowledge and belief.						
Initials:	 The signer understands that: The submission of false, incomplete, or misleading information constitutes grounds for NHDES to: Deny the application. Revoke any approval that is granted based on the information. If the signer is a certified wetland scientist, licensed surveyor, or professional engineer licensed to practice in New Hampshire, refer the matter to the joint board of licensure and certification established by RSA 310-A:1. 						
SMR	established by RSA	310-A:1.	latter to the joint board o	of licensure and cert	tification		
JMP Initials: NIA	established by RSA If the applicant is not the owne the signer that he or she is awa	310-A:1. r of the property, e re of the applicatio	act property owner signa being filed and does not	of licensure and cert ture shall constitute t object to the filing.	ification e certification b		
Initials: NA SECTION 1	established by RSA If the applicant is not the owne the signer that he or she is awa 5 - REQUIRED SIGNATURES (En	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er	ach property owner signa a being filed and does not v-Wt 311.11)	of licensure and cert ture shall constitute t object to the filing.	e certification b		
SIGNATURE	established by RSA If the applicant is not the owne the signer that he or she is awa 5 - REQUIRED SIGNATURES (En (OWNER):	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er	ach property owner signa a being filed and does not v-Wt 311.11) ME LEGIBLY:	of licensure and cert ture shall constitute t object to the filing.	certification b		
SIGNATURE	established by RSA If the applicant is not the owne the signer that he or she is awa 5 - REQUIRED SIGNATURES (En (OWNER): (APPLICANT_IF DIFFERENT FROM (m A. Junday	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er PRINT N/ DWNER): PRINT N/	ach property owner signa a being filed and does not v-Wt 311.11) ME LEGIBLY: ME LEGIBLY: Jason	ture shall constitute t object to the filing. Tremblay	DATE: DATE: 04/03/24		
SIGNATURE SIGNATURE	established by RSA If the applicant is not the owne the signer that he or she is awa 5 - REQUIRED SIGNATURES (En (OWNER): (APPLICANT, IF DIFFERENT FROM (Manual Applicable): Manual Applicable (Manual Applicabl	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er PRINT N/ DWNER): PRINT N/ PRINT N/	ach property owner signa a being filed and does not v-Wt 311.11) ME LEGIBLY: ME LEGIBLY: Jason ME LEGIBLY: Jennife	ture shall constitute t object to the filing. Tremblay er Riordan	DATE: DATE: DATE: DATE: DATE: UATE: UATE: UATE: UATE: UATE:		
Initials: NA SECTION 1! SIGNATURE SIGNATURE SIGNATURE SIGNATURE SSIGNATURE	established by RSA If the applicant is not the owner the signer that he or she is awa 5 - REQUIRED SIGNATURES (En (OWNER): (APPLICANT, IF DIFFERENT FROM (MAGENT, IF APPLICABLE): MAGENT, IF	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er PRINT N/ DWNER): PRINT N/ PRINT N/ TURE (Env-Wt 311	ach property owner signa a being filed and does not v-Wt 311.11) ME LEGIBLY: ME LEGIBLY: Jason ME LEGIBLY: Jennife 04(f))	ture shall constitute t object to the filing. Tremblay er Riordan	DATE: DATE: DATE: DATE: 04/03/24 DATE: 4/3/24		
Initials: NA SECTION 1 SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE	established by RSA If the applicant is not the owne the signer that he or she is awa 5 - REQUIRED SIGNATURES (En (OWNER): (APPLICANT, IF DIFFERENT FROM (MARCHICANT, IF APPLICABLE): MARCHICANT, IF APPLICABLE): MARCHIC	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er PRINT N/ DWNER): PRINT N/ PRINT N/ TURE (Env-Wt 311 by certify that the the town/city indic	ach property owner signa a being filed and does not v-Wt 311.11) ME LEGIBLY: ME LEGIBLY: Jason ME LEGIBLY: Jennife 04(f)) applicant has filed four a ated below.	ture shall constitute tobject to the filing. Tremblay er Riordan	DATE: DATE: DATE: DATE: DATE: DATE: UATE:		
Initials: NA SECTION 1 SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE Data SIGNATURE SECTION 1 As required plans, and TOWN/CIT	established by RSA If the applicant is not the owner the signer that he or she is awa 5 - REQUIRED SIGNATURES (En (OWNER): (APPLICANT, IF DIFFERENT FROM (and for the strength of the	310-A:1. r of the property, e re of the applicatio v-Wt 311.04(d); Er PRINT N/ DWNER): PRINT N/ PRINT N/ PRINT N/ TURE (Env-Wt 311 by certify that the the town/city indic ot, State Agency 82-A:31(a)(1)	ach property owner signa a being filed and does not v-Wt 311.11) ME LEGIBLY: ME LEGIBLY: Jason ME LEGIBLY: Jennife 04(f)) applicant has filed four a ated below. Der PRINT NAME L	ture shall constitute tobject to the filing. Tremblay er Riordan application forms, f	DATE: DATE: DATE: DATE: DATE: DATE: d/3/24		

DIRECTIONS FOR TOWN/CITY CLERK:

Per RSA 482-A:3, I(a)(1)

- 1. IMMEDIATELY sign the original application form and four copies in the signature space provided above.
- 2. Return the signed original application form and attachments to the applicant so that the applicant may submit the application form and attachments to NHDES by mail or hand delivery.
- 3. IMMEDIATELY distribute a copy of the application with one complete set of attachments to each of the following bodies: the municipal Conservation Commission, the local governing body (Board of Selectmen or Town/City Council), and the Planning Board.
- 4. Retain one copy of the application form and one complete set of attachments and make them reasonably accessible for public review.

DIRECTIONS FOR APPLICANT:

Submit the original permit application form bearing the signature of the Town/City Clerk, additional materials, and the application fee to NHDES by mail or hand delivery at the address at the bottom of this page. Make check or money order payable to "Treasurer – State of NH".

New Kampshire

USGS Location Map Nottingham 40612 NH Route 152 over North River Nottingham, NH

Supplemental Narrative

Project Description

The project involves the replacement of the existing bridge that carries NH Route 152 over the North River (Bridge No. 141/127) in Nottingham. The existing bridge is a reinforced concrete jack-arch structure with a 17-foot clear span and is currently on the State's Red List. Proposed work includes the replacement of the existing bridge with a 30-foot clear span bridge. The existing bridge is 28 feet wide. Since the standard width for state routes is 30 feet, the proposed bridge will be 2 feet wider than the existing bridge. The project includes 300 feet of roadway widening on each end of the bridge to transition the additional width on each side of the roadway at each bridge approach back to the existing roadway. The bridge will be closed during construction and traffic will be detoured.

The purpose of the project is to improve safety by replacing a deteriorated bridge. Rehabilitation of the existing bridge is not feasible due to the poor condition of the existing substructure. In addition, the existing bridge is undersized and does not convey the 100-year storm. The proposed project will increase the hydraulic capacity of the crossing and the new bridge will accommodate the 100-year storm.

Permanent easements will be required near the bridge on both sides of NH Route 152. Temporary easements will be required for the approach roadway slope work to the north and south of the bridge. The property on the west side of NH Route 152 (Fernald property, locally known as Mulligan Forest) is under a conservation easement that is held by the Society for the Protection of NH Forests (SPNHF). The project will require the acquisition of temporary and permanent easements on this property. Coordination with SPNHF has been initiated and an on-site meeting between NHDOT and SPNHF was held in September 2023. A public hearing was held on March 21, 2024 and the easements will be obtained prior to the start of construction.

The proposed project will result in permanent and temporary impacts to the North River and adjacent floodplain wetlands. These impacts are further described below. Approximately 2,750 square feet of tree clearing is anticipated.

The widening of the bridge and roadway will increase the amount of impervious surface (pavement) by approximately 2,375 square feet. Since the project involves less than 50,000 square feet of overall disturbance, stormwater treatment in accordance with the NHDES Alteration of Terrain rules is not required. Stormwater runoff will sheet flow from the roadway into open drainage ditches, similar to existing conditions. This proposed increase in impervious surface is not expected to be substantial enough to have an impact on water quality in the project area. Erosion and sediment controls will be used to minimize temporary water quality impacts during construction.

Existing Conditions / Wetland Resources

The project area includes Bridge No. 141/127 and NH Route 152, the North River, adjacent floodplain wetlands, electric transmission lines, and upland forested areas. All four bridge quadrants consist of emergent/scrub-shrub wetland, with small, forested wetland areas near the southern end of the project. The surrounding area consists of undeveloped forested land and wetlands, scattered rural residential areas, and commercial/industrial development. The transmission line runs east to west and is located just north of the bridge. A house and daycare are located southeast of the project area and Nottingham Elementary School is further to the south.

Wetland resources were delineated in May 2019 and were field verified and updated in December 2023. The wetland resources are summarized in the enclosed Wetland Delineation Report.

The North River does not have a regulatory floodway, however the entire project area is mapped as Zone A floodplain (refer to enclosed FEMA Flood Insurance Rate Map). Floodplain wetlands are located in all four bridge quadrants. These wetlands are considered Priority Resource Areas (PRAs) since they are adjacent to a Tier 3 stream. The NH Route 152/North River crossing is a Tier 3 crossing based on watershed size. The crossing is also within a NH Designated River corridor (Lamprey River watershed), a 100-year floodplain, and an area with protected species habitat.

Wetland & Watercourse Impacts

The total amount of proposed wetland and watercourse impact is 4,841 square feet and 256 linear feet. This includes 2,401 square feet (182 linear feet) of permanent perennial stream impact and 1,203 square feet (74 linear feet) of temporary perennial stream impact. In addition, approximately 538 square feet of permanent impact and approximately 699 square feet of temporary impact to PRA wetlands is proposed. The proposed impacts are further summarized in the table below.

The permanent impacts will occur from the construction of the new bridge abutments and the placement of stone for scour protection and a wildlife crossing shelf. In addition, a small amount of permanent wetland impact (160 square feet) will occur south of the bridge for roadway slope work. Temporary wetland and watercourse impacts will result from dewatering and stream diversion during construction.

Impacts to PRA wetlands from the roadway slope work were avoided and minimized by steepening slopes where possible. In the northeast, northwest, and southeast bridge quadrants, impacts to the PRA wetlands from roadway work were avoided. Stone fill is necessary on the roadway embankment to the southeast of the bridge, but the stone fill will end at the wetland edge and no impacts to this wetland area are proposed. Impacts to PRA wetlands in the southwest bridge quadrant were minimized by steepening the roadway slopes. As mentioned above, only 160 square feet of permanent PRA wetland impact is proposed from roadway slope work.

	Permanent		Temp	oorary
	SF	LF	SF	LF
Forested Wetland	126*		0	
Emergent/Scrub-Shrub Wetland	412*		699*	
Perennial Stream (North River)	2,401	81	1,203	21
Bank – Perennial Stream	0**	101	0**	53
Total	2,939	182	1,902	74

FIODOSEC MELIANCE MALEICOUISE IMPACTS

*Priority Resource Area (floodplain wetland contiguous to a Tier 3 watercourse)

**There is no defined bank within the project area. The floodplain wetlands extend from the North River, with no observable break in slope. For calculating impacts, the areas (square footage) are accounted for under wetland impact, since there is no bank area. Linear footage of bank impact was measured along the edge of each side of the channel (at the ordinary high water line, which at this site also corresponds to Top of Bank).

Impaired Waters

The segment of the North River within the project area (Assessment Unit ID NHRIV600030705-13) is listed as impaired for pH. Temporary and permanent impacts within the North River are proposed, however the project is not anticipated to affect the pH of the river. There are no Class A or Outstanding Resource Waters within or adjacent to the project area.

NH Route 152 over the North River Bridge Replacement Nottingham 40612

Mitigation

The proposed permanent stream impacts (2,401 square feet / 182 linear feet) are considered self-mitigating under Env-Wt 902.27 since the proposed bridge replacement will improve hydraulic capacity, aquatic organism passage, and geomorphic compatibility at the crossing. The design meets all requirements of Env-Wt 904.01 and meets the requirements of Env-Wt 904.07 and 904.09 except for the span requirements. Although the proposed bridge does not meet the span requirements under the stream crossing rules, it will lengthen the span from 17 feet to 30 feet and accommodate more of the bankfull width compared to the existing structure. In addition, a wildlife crossing shelf will be constructed on one side of the stream along the southern bridge abutment. The shelf will be 4 feet wide and will be constructed with riprap that is backfilled with finer material.

The proposed permanent impacts to PRA wetlands (538 square feet) are proposed to be mitigated through an in-lieu fee payment to the NHDES Aquatic Resource Mitigation (ARM) Fund. Using the NHDES ARM Fund Wetland Payment calculator, the required fee for 538 square feet of forested and emergent/scrub-shrub wetland impact is \$2,786.97 (refer to enclosed ARM Fund calculator spreadsheet).

STANDARD DREDGE AND FILL WETLANDS PERMIT APPLICATION ATTACHMENT A: MINOR AND MAJOR PROJECTS Water Division/Land Resources Management Wetlands Bureau

Check the Status of your Application

RSA/ Rule: RSA 482-A/ Env-Wt 311.10; Env-Wt 313.01(a)(1); Env-Wt 313.03

APPLICANT'S NAME: NHDOT

TOWN NAME: Nottingham

Attachment A is required for *all minor and major projects*, and must be completed *in addition* to the <u>Avoidance and</u> <u>Minimization Narrative</u> or <u>Checklist</u> that is required by Env-Wt 307.11.

For projects involving construction or modification of non-tidal shoreline structures over areas of surface waters having an absence of wetland vegetation, only Sections I.X through I.XV are required to be completed.

PART I: AVOIDANCE AND MINIMIZATION

In accordance with Env-Wt 313.03(a), the Department shall not approve any alteration of any jurisdictional area unless the applicant demonstrates that the potential impacts to jurisdictional areas have been avoided to the maximum extent practicable and that any unavoidable impacts have been minimized, as described in the <u>Wetlands Best</u> <u>Management Practice Techniques For Avoidance and Minimization</u>.

SECTION I.I - ALTERNATIVES (Env-Wt 313.03(b)(1))

Describe how there is no practicable alternative that would have a less adverse impact on the area and environments under the Department's jurisdiction.

1. NO BUILD - THIS WOULD RESULT IN LESS IMPACT THAN THE PROPOSED ACTION, BUT THE EXISTING BRIDGE IS STRUCTURALLY DEFICIENT AND WOULD POSE A SAFETY CONCERN AS IT CONTINUED TO DETERIORATE. THE EXISITING CROSSING IS UNDERSIZED AND DOES NOT CONVEY THE 100-YEAR STORM. THE NO-BUILD ALTERNATIVE WOULD NOT ADDRESS THESE ISSUES.

2. REPLACEMENT WITH A LONGER SPAN BRIDGE - A PROPOSED SPAN OF APPROXIMATELY 66 FEET WOULD BE REQUIRED TO FULLY COMPLY WITH THE STREAM CROSSING RULES (2.2 X BANKFULL WIDTH FOR TYPE E STREAMS). THE AVERAGE MEASURED BANKFULL WIDTH IS 30 FEET. ALTHOUGH THIS ALTERNATIVE WOULD BETTER ACCOMMODATE THE BANKFULL WIDTH COMPARED TO THE PROPOSED ACTION, THERE ARE PHYSICAL CONSTRAINTS AT THE SITE THAT LIMIT THE SIZE OF THE PROPOSED STRUCTURE. THIS ALTERNATIVE WOULD REQUIRE RAISING THE ROAD AND WOULD RESULT IN A LARGER AMOUNT OF PERMANENT WETLAND IMPACT COMPARED TO THE PROPOSED 30-FOOT SPAN BRIDGE. THIS ALTERNATIVE WOULD ALSO COST APPROXIMATELY 50% MORE THAN THE PROPOSED ACTION AND WOULD RESULT IN MORE IMPACTS TO ADJACENT PROPERTIES.

3. PROPOSED ACTION - REPLACEMENT WITH A 30-FOOT CLEAR SPAN RIGID FRAME PRECAST BRIDGE - ALTHOUGH THE PROPOSED ACTION DOES NOT MEET THE SPAN REQUIREMENTS OF THE STREAM CROSSING RULES, IT WILL IMPROVE AQUATIC ORGANISM PASSAGE, HYDRAULIC CAPACITY, AND GEOMORPHIC COMPATABILITY BY PROVIDING A LONGER SPAN COMPARED TO THE EXISITING BRIDGE (30 FEET VS 17 FEET). THE PROPOSED ACTION WILL ALSO INCLUDE THE ADDITION OF A WILDLIFE SHELF AT THE CROSSING AND THE NEW BRIDGE WILL CONVEY THE 100-YEAR STORM.

SECTION I.II - MARSHES (Env-Wt 313.03(b)(2))

Describe how the project avoids and minimizes impacts to tidal marshes and non-tidal marshes where documented to provide sources of nutrients for finfish, crustacean, shellfish, and wildlife of significant value.

N/A - The project does not involve impacts to marshes.

SECTION I.III - HYDROLOGIC CONNECTION (Env-Wt 313.03(b)(3))

Describe how the project maintains hydrologic connections between adjacent wetland or stream systems.

The project will maintain hydrologic connections along the North River and adjacent wetland systems by replacing an existing crossing. The project will improve the hydraulic capacity of the structure and lengthen the span from 17 feet to 30 feet. This will result in improvement to the overall stream/wetland system.

SECTION I.IV - JURISDICTIONAL IMPACTS (Env-Wt 313.03(b)(4))

Describe how the project avoids and minimizes impacts to wetlands and other areas of jurisdiction under RSA 482-A, especially those in which there are exemplary natural communities, vernal pools, protected species and habitat, documented fisheries, and habitat and reproduction areas for species of concern, or any combination thereof.

There are no exemplary natural communites or vernal pools within or adjacent to the project area. The NH Natural Heritage Bureau Report indicated that there are known records of the following state-listed species within the vicinity of the project: climbing hempvine, American eel, Blanding's turtle, bridle shiner, Northern black racer, spotted turtle, and wood turtle. A survey for climbing hempvine was conducted in 2023 and the plant species was not found within or adjacent to the project area (refer to enclosed NHB correspondence).

Consultation with the NH Fish and Game Department (NHFG) for state-listed wildlife species has occurred. NHFG recommended several conservation measures (refer to enclosed correspondence). These measures will be included as environmental commitments in the construction plans/contract documents. A wildlife shelf is proposed along the southern bridge abutment to facilitate small animal passage through the project area.

The USFWS IPaC report indicated that northern long-eared bat (NLEB) and monarch butterfly may occur within the project area. A No Effect Determination for NLEB was received using the Rangewide Determination Key in IPaC (refer to enclosed correspondence).

No long-term impacts to fish habitat are anticipated since the project will maintain existing hydrologic connections and flows at the crossing. Temporary disturbance will occur during construction. The stream will be diverted and the work area dewatered. Erosion and sediment controls and other Best Management Practices will be used to minimize water quality impacts during construction.

SECTION I.V - PUBLIC COMMERCE, NAVIGATION, OR RECREATION (Env-Wt 313.03(b)(5))

Describe how the project avoids and minimizes impacts that eliminate, depreciate or obstruct public commerce, navigation, or recreation.

The project is not anticipated to impact public commerce or navigation. The North River is not considered a navigable waterway by the US Coast Guard.

The project will result in temporary impacts to traffic during construction. Accelerated construction techniques are proposed to limit the duration of bridge closure during construction.

The segment of the North River near the project does not appear to be used for recreational boating due to the size of the channel and the height of the existing bridge. The bridge is used as an access point for fishing. This access will be maintained post-construction. Temporary impacts to recreational fishing will occur during construction.

SECTION I.VI - FLOODPLAIN WETLANDS (Env-Wt 313.03(b)(6))

Describe how the project avoids and minimizes impacts to floodplain wetlands that provide flood storage.

The entire project is located within a Zone A floodplain and the wetlands adjacent to the North River provide flood storage. Grading associated with the construction of the new bridge abutments and the placement of stone for scour protection will impact floodplain wetlands on both sides of NH Route 152. A small amount of floodplain wetland impact (160 SF) is also proposed from roadway slope work. Proposed grading near the bridges and road was minimized where possible to reduce wetland impacts. The unavoidable impacts to floodplain wetlands (approximately 538 square feet of permanent impact) are located near the wetland edges and no substantial loss of flood storage is anticipated.

Outside of the roadway, the project will result in an estimated 100 cubic yards of fill within the Zone A floodplain (this includes both wetland and upland areas). An estimated 55 cubic yards will be removed, so the project will result in a net fill of approximately 45 cubic yards within Zone A floodplain. Given the extensive floodplain wetlands within the surrounding area, this fill is not expected to have a noticeable impact on overall flood storage.

Approximately 699 square feet of temporary impact to floodplain wetlands will result from construction access and dewatering. These impacts will be restored once construction is complete and will not cause long-term impacts to flood storage.

SECTION I.VII - RIVERINE FORESTED WETLAND SYSTEMS AND SCRUB-SHRUB – MARSH COMPLEXES (Env-Wt 313.03(b)(7))

Describe how the project avoids and minimizes impacts to natural riverine forested wetland systems and scrub-shrub – marsh complexes of high ecological integrity.

The wetlands within the project area are part of a large scrub-shrub/marsh complex that is associated with the North River. They are Priority Resource Areas (floodplain wetlands adjacent to a Tier 3 stream) and also have high ecological integrity. Proposed impacts are located along the edges of the wetlands, near the existing crossing, in a portion of the wetland complex that has lower ecological integrity compared to the interior, undisturbed portion.

Although the project will result in permanent impact to scrub-shrub wetlands (approximately 538 square feet), it will improve hydraulic capacity and aquatic organism passage at the NH Route 152/North River crossing, which is expected to have a positive effect on the overall wetland complex.

SECTION I.VIII - DRINKING WATER SUPPLY AND GROUNDWATER AQUIFER LEVELS (Env-Wt 313.03(b)(8))

Describe how the project avoids and minimizes impacts to wetlands that would be detrimental to adjacent drinking water supply and groundwater aquifer levels.

Overall, the project will not result in a large amount of fill within wetlands and surface waters. Since the project involves the replacement of an existing stream crossing, impacts are unavoidable. Proposed grading has been minimized to reduce impacts. Groundwater aquifer levels are not expected to be adversely affected by the project since the majority of the adjacent wetlands will remain undisturbed and hydrologic connectivity will be improved. The project will increase the amount of impervious surface (pavement) by approximately 2,375 square feet. This increase is not expected to be substantial enough to have a noticeable impact on groundwater quality or quantity.

SECTION I.IX - STREAM CHANNELS (Env-Wt 313.03(b)(9))

Describe how the project avoids and minimizes adverse impacts to stream channels and the ability of such channels to handle runoff of waters.

Overall, the project will improve the condition of the stream channel at the NH Route 152 crossing once construction is complete. Temporary and permanent impacts are expected to the North River, however the replacement bridge will have a lengthened span, allowing for improved handling of runoff waters and greater hydraulic capacity. Riprap is necessary to protect the bridge abutment from scour. Natural streambed material will be placed in the center of the channel and over the flatter areas of riprap.

No adverse effects to the overall ability of the stream channel and wetland system to handle runoff are expected.

SECTION I.X - SHORELINE STRUCTURES - CONSTRUCTION SURFACE AREA (Env-Wt 313.03(c)(1))

Describe how the project has been designed to use the minimum construction surface area over surface waters necessary to meet the stated purpose of the structures.

N/A - The project does not involve shoreline structures.

SECTION I.XI - SHORELINE STRUCTURES - LEAST INTRUSIVE UPON PUBLIC TRUST (Env-Wt 313.03(c)(2))

Describe how the type of construction proposed is the least intrusive upon the public trust that will ensure safe docking on the frontage.

N/A - The project does not involve shoreline structures.

SECTION I.XII - SHORELINE STRUCTURES - ABUTTING PROPERTIES (Env-Wt 313.03(c)(3))

Describe how the structures have been designed to avoid and minimize impacts on ability of abutting owners to use and enjoy their properties.

N/A - The project does not involve shoreline structures.

SECTION I.XIII - SHORELINE STRUCTURES – COMMERCE AND RECREATION (Env-Wt 313.03(c)(4))

Describe how the structures have been designed to avoid and minimize impacts to the public's right to navigation, passage, and use of the resource for commerce and recreation.

N/A - The project does not involve shoreline structures.

SECTION I.XIV - SHORELINE STRUCTURES – WATER QUALITY, AQUATIC VEGETATION, WILDLIFE AND FINFISH HABITAT (Env-Wt 313.03(c)(5))

Describe how the structures have been designed, located, and configured to avoid impacts to water quality, aquatic vegetation, and wildlife and finfish habitat.

N/A - The project does not involve shoreline structures.

SECTION I.XV - SHORELINE STRUCTURES – VEGETATION REMOVAL, ACCESS POINTS, AND SHORELINE STABILITY (Env-Wt 313.03(c)(6))

Describe how the structures have been designed to avoid and minimize the removal of vegetation, the number of access points through wetlands or over the bank, and activities that may have an adverse effect on shoreline stability.

N/A - The project does not involve shoreline structures.

PART II: FUNCTIONAL ASSESSMENT

REQUIREMENTS

Ensure that project meets the requirements of Env-Wt 311.10 regarding functional assessment (Env-Wt 311.04(j); Env-Wt 311.10).

FUNCTIONAL ASSESSMENT METHOD USED:

US Army Corps of Engineers Highway Methodology Workbook Supplement

NAME OF CERTIFIED WETLAND SCIENTIST (FOR NON-TIDAL PROJECTS) OR QUALIFIED COASTAL PROFESSIONAL (FOR TIDAL PROJECTS) WHO COMPLETED THE ASSESSMENT: JENNIFER RIORDAN (CWS #269)

DATE OF ASSESSMENT: 1/11/2024

Check this box to confirm that the application includes a NARRATIVE ON FUNCTIONAL ASSESSMENT:

For minor or major projects requiring a standard permit without mitigation, the applicant shall submit a wetland evaluation report that includes completed checklists and information demonstrating the RELATIVE FUNCTIONS AND VALUES OF EACH WETLAND EVALUATED. Check this box to confirm that the application includes this information, if applicable:

 \boxtimes

Note: The Wetlands Functional Assessment worksheet can be used to compile the information needed to meet functional assessment requirements.

AVOIDANCE AND MINIMIZATION WRITTEN NARRATIVE Water Division/Land Resources Management Wetlands Bureau <u>Check the Status of your Application</u>

RSA/ Rule: RSA 482-A/ Env-Wt 311.04(j); Env-Wt 311.07; Env-Wt 313.01(a)(1)b; Env-Wt 313.01(c)

APPLICANT'S NAME: NHDOT

TOWN NAME: Nottingham

An applicant for a standard permit shall submit with the permit application a written narrative that explains how all impacts to functions and values of all jurisdictional areas have been avoided and minimized to the maximum extent practicable. This attachment can be used to guide the narrative (attach additional pages if needed). Alternatively, the applicant may attach a completed <u>Avoidance and Minimization Checklist (NHDES-W-06-050)</u> to the permit application.

SECTION 1 - WATER ACCESS STRUCTURES (Env-Wt 311.07(b)(1))

Is the primary purpose of the proposed project to construct a water access structure?

No. The project is a bridge replacement project that does not involve the construction of a water access structure.

SECTION 2 - BUILDABLE LOT (Env-Wt 311.07(b)(1))

Does the proposed project require access through wetlands to reach a buildable lot or portion thereof?

No

SECTION 3 - AVAILABLE PROPERTY (Env-Wt 311.07(b)(2))*

For any project that proposes permanent impacts of more than one acre, or that proposes permanent impacts to a PRA, or both, are any other properties reasonably available to the applicant, whether already owned or controlled by the applicant or not, that could be used to achieve the project's purpose without altering the functions and values of any jurisdictional area, in particular wetlands, streams, and PRAs?

*Except as provided in any project-specific criteria and except for NH Department of Transportation projects that qualify for a categorical exclusion under the National Environmental Policy Act.

The project involves less than one acre of permanent wetland impact but includes 538 square feet of permanent impact to PRA wetlands.

Since the project involves the replacement of an existing stream crossing, there are no other feasible properties available. Relocating NH Route 152 would result in a greater amount of wetland impact since there are large PRA wetlands on both sides of the existing crossing. The project is at an existing crossing and the wetland impacts are at the edge of the roadway.

Although the project will result in permanent impacts to PRAs, it will improve the conditions at the NH Route 152/North River crossing by lengthening the bridge span and improving hydraulic capacity, aquatic organism passage, and geomorphic compatability, as well as constructing wildlife shelves to allow for animal passage. These improvements will benefit the overall wetland system near the North River.

SECTION 4 - ALTERNATIVES (Env-Wt 311.07(b)(3))

Could alternative designs or techniques, such as different layouts, different construction sequencing, or alternative technologies be used to avoid impacts to jurisdictional areas or their functions and values as described in the <u>Wetlands</u> <u>Best Management Practice Techniques For Avoidance and Minimization</u>?

The majority of the proposed permanent impact is associated with the construction of the new bridge abutments, the placement of stone for scour protection, and the wildlife shelf within the channel and banks. This will not result in a loss of wetland and stream functions since the project will improve hydraulic capacity, aquatic organism and wildlife passage, and geomorphic compatibility at the crossing. The use of soft armoring techniques around the new bridge is not feasible. Stone is needed to protect the abutments from scour. Natural streambed material will be placed in the center of the channel and over the flatter areas of riprap. Voids within the stone riprap for the wildlife shelf will be filled with finer material to create a relatively smooth surface for wildlife.

A small amount of permanent wetland impact (160 square feet) will occur south of the bridge for roadway slope work. Complete avoidance of wetland impacts from roadway slope work was not possible since a small amount of roadway widening is required to match the wider bridge. Impacts to the PRA wetlands along the roadway were minimized by steepening the proposed roadway embankment and using armored slopes.

During construction, the bridge will be closed and traffic will be detoured. Other traffic control options would result in a greater amount of impact to jurisdictional areas. Phased construction to maintain one lane of traffic in each direction would require further widening of the proposed bridge and additional impacts. Construction of an offline temporary bridge would allow the roadway to remain fully open during construction but this would also result in additional wetland and stream impacts.

SECTION 5 - CONFORMANCE WITH Env-Wt 311.10(c) (Env-Wt 311.07(b)(4))**

How does the project conform to Env-Wt 311.10(c)?

**Except for projects solely limited to construction or modification of non-tidal shoreline structures only need to complete relevant sections of Attachment A.

A functional assessment was completed for the wetlands within the project area (functional assessment forms are enclosed).

The project is not expected to impact the functions provided by the wetland systems within and adjacent to the project area. All impacts are located next to the bridge and NH Route 152, within lower functioning portions of the wetland. Impacts to the higher quality, interior portions of the wetlands will be avoided. The project will ultimately improve the exisiting conditions at the crossing by providing a longer span.

The wetland system within and adjacent to the project provide ecological integrity, fish and aquatic life habitat, flood storage, groundwater recharge, noteworthiness, nutrient trapping, production export, scenic quality, sediment trapping, shoreline anchoring, uniqueness/heritage, wetland-based recreation, and wetland-dependent wildlife habitat. Of these, all are provided at the principal level except groundwater recharge, scenic quality, and wetland-dependent recreation.

BUREAU OF ENVIRONMENT CONFERENCE REPORT

SUBJECT: NHDOT Monthly Natural Resource Agency Coordination Meeting **DATE OF CONFERENCE:** November 20, 2019 **LOCATION OF CONFERENCE:** John O. Morton Building **ATTENDED BY:**

NHDOT

Sarah Large Ron Crickard Andrew O'Sullivan Arin Mills Toney Weatherbee Tobey Reynolds Rick Faul Kerry Ryan Rebecca Martin Stephanie Micucci David Scott ACOE Mike Hicks Rick Kristoff

NHDES Karl Benedict Seta Detzel

NH Fish & Game Carol Henderson **NH NHB** Amy Lamb

Consultants/Public Participants Tom Levins Jennifer Riordan

PRESENTATIONS/ PROJECTS REVIEWED THIS MONTH: (minutes on subsequent pages)

Postponed the finalization of the August 21, 2019 and October 16, 2019 Meeting Minutes	2
Jaffrey, #2019-M412-1	2
Nottingham. #40612	3
Bethlehem, #26763 (X-A004(296))	5

(When viewing these minutes online, click on a project to zoom to the minutes for that project.)

Andy further clarified this will be under the existing rules and during a flooding event the roadway will not be compromised. Seta and Karl stated if the crossing is attenuating water then an alternative design is appropriate, but if the water overtops the roadway an analysis will be required to ensure the integrity of the roadway will be maintained. Karl mentioned alternative design is required if the water will overtop the pipe and alternative design will be required. Sarah said we will verify with project manager on calculations and determine the appropriate form.

Arin discussed the 5'CMP crossing further downstream and that much of the flood storage capacity will be held in the upstream agricultural wet meadow. Upstream east and downstream is a forested wetland. The design plan was shown with the 5' extension on the inlet and 6' on the outlet to extend the road shoulder, no perch. Resource review found no NHB "hits", NLEB consistency determination, no FEMA floodplains, it is a Tier 2 crossing, a proposed AoT permit by rule and has "No Potential to Cause Effect" for cultural review. Arin showed and discussed the erosion control plan of the coffer dam and dewatering into silt bags with erosion control at the perimeter. Arin said the anticipated total impacts are 932 s.f. of permanent and 1,215 s.f. of temporary. Seta asked the anticipated construction date and Arin said summer of 2020. There was a review of the plans and both temporary and permanent impacts. Sarah agreed that a meeting with Lori would be set up to discuss mitigation requirements and potential for self-mitigation under the existing rules.

Mike verified IPaC results and Arin said 4(d) rule consistency was determined as the NLEB was the only species returned for both locations.

This project has not been previously discussed at a Monthly Natural Resource Agency Coordination Meeting.

Nottingham, #40612

Tom Levins from GM2 Associates provided an overview of the project, which involves the replacement of the bridge that carries NH Route 152 over the North River in Nottingham. The project is currently in the preliminary design phase and alternatives are being considered. The substructure has deteriorated to a point that rehabilitation is not a feasible option. The existing width of 29 feet is also substandard and the existing hydraulic opening does not convey the Q100 storm event. The project is currently scheduled to advertise in 2024.

The existing bridge was constructed in 1925 and rebuilt in 1970. The existing span is 17 feet. The bridge is on the State's Red List and the purpose of the project is to replace the deteriorated bridge. Alternatives that are being considered include:

- 20-foot clear span. This is the minimum required to convey the Q100 storm event. It would not convey the Q500 storm event. Analysis to determine upstream and downstream impacts is ongoing. This alternative would not require raising the grade of the road and would therefore have less impact on the adjacent wetlands and properties.
- 38-foot clear span. This would meet the Stream Crossing Rules (if 1.2xBFW+2 equation is used). The road would need to be raised, resulting in more impact to adjacent wetlands and properties.

Traffic control options include closing NH Route 152 for 21 to 28 days and detouring traffic. This option would utilize accelerated bridge construction. Another option is phased construction with one lane, signalized alternating traffic.

Karl Benedict (NHDES) asked if the project is located in a floodplain. Tom confirmed that it's in a Zone A floodplain. Karl also asked about watershed size. Jenn Riordan (GM2) stated that the watershed is approximately 6,800 acres so it's a Tier 3 crossing.

Jenn provided an overview of the natural resources. The North River is a Designated River as part of the Lamprey River Watershed. It's also subject to the Shoreland Water Quality Protection Act. There are emergent/scrub-shrub wetlands adjacent to the North River on both sides of NH Route 152. The area is very flat. At the time of the wetland delineation, the North River had very slow flow velocity. The bankfull width was determined to be approximately 30 feet and the Rosgen classification is Type E.

There was a discussion of whether a longer span is necessary for compliance with the NHDES Stream Crossing Rules since the crossing is on a Type E stream. NHDES stated that the entrenchment ratio multiplier should be used on Type E streams (2.2xBFW). The span would likely need to be 60 or more feet to be compliant with the Stream Crossing Rules. Seta Detzel (NHDES) mentioned that floodplain pipes could be used in combination with a smaller span to help with flood capacity. Since a span of 60+ feet would require raising the grade of the road and would have permanent impacts to wetlands and adjacent properties, the project will likely need to use a shorter span and apply for Alternative Design. Karl mentioned that the Alternative Design technical report will need to address the reasons why the project cannot meet full compliance with the Stream Crossing Rules. Karl also recommended completing the Stream Crossing Worksheet available on the NHDES website.

Federally-listed species within the project vicinity include northern long-eared bat and small whorled pogonia. No small whorled pogonia plants were observed during the field visit. No evidence of bats was observed during a survey of the bridge. State-listed species include American eel, Blanding's turtle, Northern black racer, and spotted turtle. The project is also within a brook floater zone. GM2 contacted Kim Tuttle (NHF&G) and Kim responded that no impacts to eels or brook floater mussels are expected. NHF&G recommended the following conditions for turtle and snake species:

- Cover road shoulder on south side of bridge with black silt fence fabric if work will begin after turtle nesting season (June 1st)
- Use wildlife-friendly erosion control matting
- Distribute turtle and snake flyers to contractors and include notes/photos on plans

Conservation land (an easement held by the Society for the Protection of NH Forests) is located on the west side of Route 152.

For cultural resource review, a bridge inventory was completed and it was determined to be Not Eligible for the Register of Historic Places. A Phase IA/IB archaeological survey was completed. No evidence of cultural features or deposits was found and no further survey is recommended. The report is being finalized and still needs to be submitted to DHR.

Sarah Large commented that permanent impacts to the emergent/scrub-shrub wetlands should be avoided. The goal should be to widen the bridge opening but also minimize permanent impacts. Jenn mentioned that the project will be presented at another Natural Resource Agency Meeting once impacts have been determined.

Mike Hicks (ACOE) asked if the US Coast Guard had commented on the project. Sarah responded that the USCG had not reviewed the meeting agenda yet.

This project has not been previously discussed at a Monthly Natural Resource Agency Coordination

Meeting.

Bethlehem, #26763 (X-A004(296))

The proposed project will address a culvert under Main Street (US Route 302) between Maple Street (NH Route 142) and Congress Road in Bethlehem. The stream through the structure is a tributary to Barrett Brook. The inlet is near the Bethlehem Visitor Center and Heritage Society building and the outlet is near the Maia Papaya and White Mountain Transmission shops.

Stephanie Micucci described that the culvert is made up of several different sections, is quite old and is deteriorating. She described that the culvert goes under a local business parking lot. S. Micucci also shared that there have been sink holes developing over the culvert and the connecting drainage lines on US 302 and in the Maia Papaya parking lot.

S. Micucci explained that the project has received a wetland permit, which does not expire until 2023. She described that the project had gone out to bid and a contractor was selected in the fall of 2018. She described the permitted scope of work. The permitted scope of work includes replacing the concrete retaining walls at the inlet in-kind, lining the culvert with plastic in one section and corrugated metal tunnel liner plate in another section. The permitted project had been to line 35 feet at the inlet with elliptical plastic pipe and line the remainder (145 feet) with corrugated metal tunnel liner plate. The space in between the existing pipe and the liner was planned to be filled with grout. The perch at the outlet would be eliminated by adding simulated streambed material to build up the area at the outlet. No excavation at the outlet was proposed to avoid impacting contaminated material in the vicinity. The permitted project would also repair the drainage under US Route 302 to help prevent future sink holes. The velocities in the pipe were expected to be similar to the existing condition under the permitted design. S. Micucci explained that adult brook trout would be expected to potentially be able to pass through the pipe under the permitted design. Construction was intended to be completed in the fall of 2019.

S. Micucci explained that District and Construction Bureau folks raised concerns during construction about reducing the effective culvert size with a liner. They were concerned because of observed high water levels at the inlet under the existing condition. Highway Design reviewed the hydraulic analysis, which validated District's concerns. After several discussions between the Bureaus of Highway Design, Bridge Design, Construction, Environment, Materials and Research, and District, a new scope of work was developed. S. Micucci explained that due to the size and scope of the advertised contract, the proposed new scope would only extend the life of the culvert and the vicinity under the advertised contract (Revision after Proposal), but is not anticipated to be a long term solution. It is understood that the crossing would likely still need to be improved/replaced in the future. Tobey Reynolds explained that its condition would be monitored regularly through the culvert inventory program and by District.

The current proposed scope is intended to mitigate the risk of a substantial failure and extend the life of the existing culvert, instead of waiting longer to design and build a longer term solution. A Revision After Proposal is intended for January of 2020 with construction in the spring of 2020. Under the new proposal only one of the concrete retaining walls would be replaced at the inlet, likely reducing the impacts, and the remainder of the project would have the same impacts. The west side concrete retaining wall is leaning, so this wall is proposed to be replaced with a precast modular block retaining wall. The project would also use shotcrete to fill in the voids in the box culvert (100') and shotcrete line the invert of the steel arch pipe. The shotcrete liner is a little rougher than a standard reinforced concrete pipe.

Mike Hicks inquired about the methods of construction. T. Reynolds explained that the liner is installed in the dry, so there will be a water diversion. S. Micucci explained that the velocity in the metal section of pipe is anticipated to be higher than the current velocity. The team is coordinating with John Magee of NH

BUREAU OF ENVIRONMENT CONFERENCE REPORT

SUBJECT: NHDOT Monthly Natural Resource Agency Coordination Meeting **DATE OF CONFERENCE:** January 20, 2021 **LOCATION OF CONFERENCE:** Virtual meeting held via Zoom

ATTENDED BY:

NHDOT

Sarah Large Matt Urban Andrew O'Sullivan Ron Crickard Mark Hemmerlein Arin Mills Rebecca Martin James McMahon **Ralph Sanders** Toney Weatherbee Jason Tremblay **Chuck Corliss** Tim Boodey Marc Laurin Jennifer Reczek **Tobey Reynolds** Dan Prehemo Gerry Bedard

ACOE Mike Hicks

EPA Beth Alafat Jeanie Brochi

NHDES Lori Sommer Karl Benedict Ann-Elizabeth Pelonzi

The Nature Conservancy Pete Steckler **Consultants/ Public Participants** Jennifer Riordan Tom Levins Lee Carbonneau Thomas Marshall Gene McCarthy

PRESENTATIONS/ PROJECTS REVIEWED THIS MONTH: (minutes on subsequent pages)

Finalize Meeting Minutes	2
Sugar Hill, #43226	2
Middleton, #43067	3
Nottingham, #40612	5
Harts Location, #40595-2	8
Lyme, #43079	10
Bedford, #13692-C (X-004(254))	11
Bedford, #13692-C (X-004(254))	10

(When viewing these minutes online, click on a project to zoom to the minutes for that project.)

Lori said the project is likely under the threshold for mitigation, and therefore will likely not be required. She mentioned, since this project involves a tier 1 crossing, if the project is a minimum impact project mitigation is not required; and even if the project classification is a minor, the impacts will likely be under the threshold for mitigation. Karl reiterated that the threshold for a minor impact project is less than 200 LF along the watercourse.

Amy Lamb mentioned via email she has no concerns. Mike Hicks, Jeanie Brochi and Pete Steckler all had no comments. Karl added one last comment specific to the draft impact plans shown at the meeting; the area between the pipe extensions would be considered permanent and will need to be adjusted on the plans.

This project has not been previously discussed at the Monthly Natural Resource Agency Coordination Meeting.

Nottingham, #40612

Jenn Riordan (GM2) presented the project, which includes replacement of the NH Route 152 bridge over the North River in Nottingham. The project is state funded so the US Army Corps of Engineers (ACOE) is the lead federal agency, not FHWA. The project was previously presented at the November 2019 Natural Resource meeting. Since then, the design has progressed and wetland/stream impacts of the preferred alternative have been estimated.

The area adjacent to the bridge is mostly wetland. Powerlines are located to the north. A house and daycare are located southeast of the bridge and Nottingham Elementary School is located further south. A house is also located to the northeast.

The existing bridge is a reinforced concrete jack-arch structure with a 17-foot span. It was constructed in 1925 and rebuilt in 1970. It has stone and concrete abutments and wingwalls and is currently on the State's Red List. The existing bridge does not convey the 100-year storm but there is no known history of flooding at the site.

The Preferred Alternative involves replacement of the bridge with a 30-foot span structure. Rehabilitation of the bridge is not a viable option since the substructure has deteriorated to a point where it can't be repaired. The existing hydraulic opening is also a concern. The entire bridge needs to be replaced. The project will also involve 200 feet of roadway widening on each side of the bridge. A second bridge replacement alternative that is being evaluated is a 66-foot span structure. This would be compliant with the NHDES Stream Crossing Rules, but would have more wetland impacts and would cost approximately 50% more than the 30-foot span.

There are several traffic control options. The Preferred Alternative would involve closing the bridge during construction and detouring traffic. The detour is about 20 miles on state roads and 12 miles on local roads. The bridge would be closed for 28 days. Construction would take one season. This traffic control option would have the least amount of impact to environmental resources and would only take one construction season. Another alternative would involve phased construction, which would maintain one lane of traffic in each direction. This would require additional widening of the proposed structure. Construction would take two seasons. The third traffic control alternative would involve construction of an offline temporary bridge that would allow the road to remain open during construction, but would result in additional wetland impacts. Construction with a temporary bridge would take two seasons.

Design of the project is ongoing. A Public Officials Meeting is scheduled for February 8, 2021. The advertisement date is currently in 2024.

The natural resources at the site include Priority Resource Area (PRA) wetlands on both sides of NH Route 152 and the North River. The North River is a Tier 3 crossing (watershed is 6,800 acres), a NH Designated River (as part of the Lamprey River watershed), and subject to the Shoreland Water Quality Protection Act. The site is located within a Zone A floodplain, but there is no floodway. It is assumed that water quality treatment will not be required since the ground disturbance will be well under 50,000 SF for AoT and the site is not within a MS4 regulated community. There are two public water supply wells located south of the site. A daycare well is located approximately 150 feet south of the southern project limit. The well for Nottingham Elementary School is located approximately 1,200 feet southeast of the project limit. These distances are based on the NHDES OneStop Mapper. GM2 needs to coordinate with the NHDES Drinking Water Bureau regarding any specific recommendations.

LCHIP conservation land is located along the west side of NH Route 152, outside of the NHDOT ROW. Several federal- and state-listed species were identified in the IPac and NHB reports. Federal species include northern long-eared bat and small whorled pogonia. No evidence of bats was observed in the bridge and no small whorled pogonia plants were found at the site. There is potential habitat for small whorled pogonia located further from the bridge in the forested upland areas. State-listed species include brook floater, American eel, Blanding's turtle, Northern black racer, and spotted turtle. NH Fish and Game was contacted regarding these species. They indicated that no impacts to eels or brook floater mussels are expected. They also recommended the following conditions for turtle and snake species: cover road shoulder on the south side of the bridge with silt fence fabric if work will begin after turtle nesting season begins; use wildlife-friendly erosion control matting; and distribute turtle and snake flyers to contractors and include notes/photos on project plans. The Nature Conservancy placed wildlife cameras at the site to obtain information on wildlife passage.

The stream crossing rules were discussed. Bankfull width (BFW) is approximately 30 feet and the North River is a Type E stream near the project. A 66-foot bridge span would be compliant with the NHDES Stream Crossing Rules (2.2 x BFW). The project will need to apply for Alternative Design since the Preferred Alternative is a 30-foot bridge span. A longer span would require raising the road and would increase permanent wetland impacts. The 66-foot span alternative would also cost over 50% more compared to the 30-foot span alternative.

Wetland impacts for the Preferred Alternative (30-foot span with bridge closure during construction) are estimated at 3,416 SF of wetland impact and 182 LF of stream impact. This includes 1,164 SF of permanent wetland/stream impact and 105 LF of permanent stream impact, as well as 2,252 SF of temporary wetland/stream impact and 77 LF of temporary stream impact. The Preferred Alternative has the least amount of wetland impact. The 66-foot span alternative would result in more wetland impact from roadway work. Phased construction would require additional bridge widening, resulting in more wetland impact. A temporary bridge during construction would result in additional temporary wetland impacts.

The wetland/stream impacts associated with the Preferred Alternative are associated with bridge replacement. The roadway approach widening will avoid wetlands. The Preferred Alternative appears to be self-mitigating since it will lengthen the bridge span from 17 to 30 feet and will improve hydraulic capacity (the proposed bridge will convey the 100-year flood while the existing bridge does not). The Preferred Alternative also includes the addition of a wildlife shelf under the bridge to improve wildlife passage in the project area.

The resource agencies then provided comments on the project.

Karl Benedict (NHDES)

- Agree with the approach to apply for Alternative Design
- The stream impacts seem to be self-mitigating due to the hydraulic improvements, although permanent impacts to PRA wetlands located above ordinary high water will need to be mitigated. Jenn Riordan confirmed that this would include approximately 236 SF of impact as currently shown for the Preferred Alternative.
- Asked if the amount of new impervious surface has been quantified. Tom Levins replied that the area has not been determined but it would likely be around a 10% increase. Karl mentioned the need to confirm if AoT requirements need to be met.

Lori Sommer (NHDES)

- Agreed that permanent PRA wetland impacts need to be mitigated. She commented that she would like to see the plans.
- Local conservation commission should be contacted, but since it is such a small amount of mitigation, an ARM fund payment would be appropriate in this case.
- Impacts to the LCHIP property on the west side of NH Route 152 should be discussed with Lori. Jenn Riordan commented that the LCHIP property is on the west side outside of the ROW and she doesn't believe there will be impacts.
- Agreed that the project is self-mitigating for the stream impacts. Since the wildlife shelf is part of the proposed mitigation, a post-construction report and follow-up monitoring would be needed.
- Do floodplain culverts need to be considered as part of the Alternative Design review? Karl responded that accommodating the 100-year flood event meets this requirement.

Pete Steckler (TNC)

- The project intersects the Connect the Coast planning effort. TNC placed two wildlife cameras at the site: one at the bridge and one southeast in the floodplain area. Currently, there is not much opportunity for wildlife crossing at the existing bridge, there is no dry area below the abutments, so no place for animals to walk. Not many animals were observed but there are a lot of people who fish near the bridge. The floodplain camera detected various species. A floodplain culvert may perform better for wildlife passage than a shelf under the bridge.
- Most larger animals would be expected to stick to the forested edge of the wetland area and not walk out in the more open area where they would be more exposed. However, smaller floodplain dependent species like raccoons and mink would be anticipated to potentially use a shelf.

Liz Pelonzi (NHDES)

• Liz suggested that GM2 reach out to her regarding the daycare well. Rebecca received an email from Liz which she will forward to Jenn Riordan. If this well is within 200 feet of the project, Level 4 protection measures are recommended.

Mike Hicks (ACOE)

• Is this a Section 106 No Adverse Effect? Jenn Riordan responded that the bridge was determined Not Eligible.

Jean Brochi (EPA)arol

• No comments

Amy Lamb was not in attendance but Sarah Large reported that she had no concerns, but that the NHB report was expired.

Wildlife passage was discussed further, particularly the use of the adjacent floodplain/forest habitat and the potential for floodplain culverts. Pete Steckler said that bear will pass through a 48-inch culvert. He recommended a 5-foot culvert, if the road profile allows for it. A wildlife shelf is still useful if the design doesn't allow for a floodplain/wildlife crossing culvert.

This project was previously discussed at the 11/20/2019 Monthly Natural Resource Agency Coordination Meeting.

Harts Location, #40595-2

Arin Mills, NHDOT Environmental Manager, presented the railroad bridge repair project which carries the Conway Scenic Railroad (CSRR), bridge #81.82, over Kedron Brook in Harts Location and within Crawford Notch State Park. The railroad line was described as an active line operated by CSRR as a lessee and provides tourist service in all seasons with the exception of winter. A figure showed the line runs from Conway to Luneburg, VT and the active line is only the Conway to Whitefield section. Arin further described the line is owned and maintained by the State of NH and was constructed in ~1886 with very limited plans of construction. The track is a Class II track with a max speed of 20 MPH and the DOT ROW is 49.5' wide from centerline.

Kedron Brook is a mountainous stream which flows from the steep terrain on Mt Willey, and flows ~ 0.5 miles from the site reach to the site. From the site Kedron Brook flows ~ 0.3 miles under US 302 and empties into the Saco River. Photos were shown of the existing conditions of the site from the fall of 2020, to include the slope failure on the NE wing of the crossing and slope material which has entered the stream. Project challenges were outlined to include; no roadway access (rail only), limitations of the rail access to include 2 large bridge structures which limit the ability of movement of equipment needed for the project to the site, excessive slope steepness, no existing staging area and limited staging areas at the Arethusa Falls parking lot (DNCR) within the NHDOT ROW of 49.5 ft.

A map showed the proposed (tentative) path where heavy equipment would create a temporary access route from US 302. This access request is in-process with the DNCR, who are receptive to the proposal. Photographs from a site visit conducted in the fall of 2020 showed the forested area and proposed staging area near the failure. Based on the site visit no wetlands were observed along this access route.

Chuck Corliss, NHDOT Operations Engineer, showed a project overview plan with the wetlands field data collected and existing topography of the site. He then showed the location of the proposed Class 5 rip rap would be placed at a 1.5:1 slope to repair and stabilize the failing slope. Chuck then described the proposed staging area required for staging of both material and equipment during construction. At this time the hope is to keep this within the existing DOT ROW (49.5' from centerline), although there is potential for additional clearing within the forest needed for staging. Chuck described a basic access plan to include the installation of erosion control measures, excavation of a ramp to the NE slope to allow movement of excavator and material to the base of the slope. The cofferdam and clean water bypass pipe will allow for clean water flow to be maintained throughout construction.

Chuck showed a preliminary wetland impact plan to include removal of existing material in the stream and placement of stone from the stream channel to the top of the bank to stabilize and repair the failure. Chuck described a basic construction sequence to include installation of erosion control measures, prepare staging area in NE corner, install coffer dam and bypass pipe, excavation of NE corner to the base of the failure, removal of excess material from Brook, installation of stone from Brook and up slope to match existing grade at rail. Once work is completed the staging area will be reseeded and erosion control measures will

BUREAU OF ENVIRONMENT CONFERENCE REPORT

SUBJECT: NHDOT Monthly Natural Resource Agency Coordination Meeting **DATE OF CONFERENCE:** January 17, 2024 **LOCATION OF CONFERENCE:** Virtual meeting held via Zoom

ATTENDED BY:

NHDOT

Andrew O'Sullivan Joshua Brown Jon Evans Mark Hemmerlein Rebecca Martin Levi Byers Kerry Ryan Chris Carucci David Smith Rhona Thomson Curtis Morrill Arin Mills Ron Grandmaison Carol Niewola Jason Tremblay Meli Dube Corey Spetelunas Hans Weber Rick Dyment Lilah Flynn

USCG Absent

EPA Jean Brochi

NHDES

Karl Benedict Seta Detzel Emily Nichols Mary Ann Tilton Eben Lewis

NHB

Absent

NH Fish & Game Mike Dionne Kevin Newton Jared Lamy Melissa Winters

ACOE

Absent

Federal Highway Jamie Sikora US Fish & Wildlife Absent

The Nature Conservancy Absent

NH Transportation & Wildlife Workgroup Absent

Consultants/ Public Participants Leslie Merrithew Gregg Cohen Carl Gross Jennifer Riordan Tom Levins

PRESENTATIONS/ PROJECTS REVIEWED THIS MONTH: (minutes on subsequent pages)

Table of Contents

Finalize Meeting Minutes	2
Errol, 42751 (non-fed):	2
Alton, 44456 (X-A005(504)):	3
Sunapee, 44438 (X-A005(529)):	6
Lebanon Municipal Airport (3-33-0010-073-2023):	8
Andover, 40392 (X-A004(384)):	10
Nottingham, 40612 (Non-fed):	13
Hampton-Portsmouth. 26485A (X-A005(269)):	16
1 ' \ \ //	-

considered self-mitigating if natural streambed simulation can be used instead of the stone riprap and if a wildlife shelf can be incorporated.

- Andrew O'Sullivan (NHDOT) asked if a wildlife shelf is possible and if streambed simulation could be used.
 - Tom Levins (GM2) mentioned that a flatter area is proposed near one of the abutments. This could potentially be utilized as a wildlife shelf. Riprap at the edge of the channel is necessary for scour protection near the abutments. The center of the channel will be natural material.

Mary Ann Tilton (NHDES)

• Reinforced the prime wetland discussion regarding correspondence with the conservation commission. Recommended looking at the October 2023 rule change regarding mitigation (Env-Wt 803.01).

Seta Detzel (NHDES)

• Questioned if the project is self-mitigating if riprap extends beyond the existing abutments. Cross-sections would be helpful. Permanent impacts to prime wetlands and PRAs from roadway widening and farm drive relocation require mitigation.

Kevin Newton (NHFG)

- Asked if brook floater was the only record on the NHB report.
 - Jenn Riordan The most current NHB report had no records. A previous report had brook floater.

Jared Lamy (NHFG)

• No comments.

Jamie Sikora (FHWA)

• No comments.

Jean Brochi

- Asked if EFH consultation with NOAA is complete.
 - Jenn Riordan confirmed that it was completed. NOAA responded that the project as proposed is not anticipated to adversely affect EFH.

Nottingham, 40612 (Non-fed):

Jenn Riordan (GM2) introduced the project which involves the replacement of the NH Route 152 bridge over the North River in Nottingham. The existing bridge is a reinforced concrete jack-arch structure with a 17-foot span. It is on the State's Red List and does not convey the 100-year storm. The project proposes to replace the existing bridge with a 30-foot span bridge. The new bridge will convey the 100-year storm. The bridge will be widened 2 feet and the project will also involve 200 feet of roadway widening at each end of the bridge. Approximately 2,600 square feet of new impervious surface (pavement) is proposed. The project is not subject to AoT requirements (under 50,000 square feet of disturbance). Temporary and permanent easements will be required.

Bridge rehabilitation is not feasible due to the deteriorated condition of the existing bridge. Replacement with a NHDES stream crossing rules-compliant structure (66-foot span) was evaluated. This alternative is not practicable due to cost and impacts to wetlands and adjacent properties. Several traffic control alternatives were evaluated during preliminary design. Closing the bridge and detouring traffic during construction is proposed. Phased construction would maintain one lane of traffic but would require additional widening and more impacts compared to bridge closure. Construction of a temporary bridge would allow the roadway to remain open, but would result in greater impacts.

Priority Resource Area wetlands (floodplain wetlands adjacent to a Tier 3 stream) are located at all four bridge quadrants. The North River is a Tier 3 crossing, has a Protected Shoreland, and is a Designated River (as part of the Lamprey River watershed). Water quality treatment is not required since the project involves less than 50,000 square feet of disturbance. Public water supply wells are located to the south of the project. Recommendations from the NHDES Drinking & Groundwater Bureau were reviewed during design. Under proposed conditions, runoff from the roadway will generally be directed away from the wellhead protection areas.

The entire project is located within a Zone A floodplain. The property on the west side of NH Route 152 is LCHIP-funded conservation land (easement is held by Society for the Protection of NH Forests). For Section 106, a finding of No Historic Properties Affected was received. The bridge is not eligible for the National Register of Historic Places.

Federally-listed species include northern long-eared bat and monarch butterfly. A No Effect determination was received for northern long-eared bat. Various species were included in the NHB report. A survey for climbing hempvine was completed by FB Environmental in 2023. The plant was not found in the project area. Consultation with the NH Fish & Game Department (NHFG) occurred during preliminary design. Several recommendations were provided by NHFG and these were incorporated into the project. The Nature Conservancy put wildlife cameras at the site to collect data on wildlife movement near the bridge.

A stream crossing assessment was completed using a combination of field observations and desktop analysis (LiDAR data). The depth of the river and adjacent wetlands made access difficult. Measured widths were consistent with field observations. The numbers were also compared to predicted values using the NH Regional Hydraulic Curves. Overall, the values and general characteristics of the North River and typical for a Type E stream. The bankfull width was determined to be approximately 30 feet. Using this width, the stream crossing rules compliant span would be 66 feet (2.2 x BFW). This span length is not practicable due to impacts to adjacent properties and cost. It would require raising the road and would also increase the amount of permanent wetland impact. The proposed 30-foot span bridge meets all requirements of Env-Wt 904.01 and meets all requirements of Env-Wt 904.07 and 904.09 to the maximum extent practicable (meets everything except span requirement).

Approximately 2,939 SF (182 LF) of permanent wetland and stream impact and approximately 1,902 SF (74 LF) of temporary wetland and stream impact is proposed. This includes approximately 538 SF of permanent impact and approximately 669 SF of temporary impact to PRA wetlands. Wetland impacts will result from the construction of the new bridge abutments and there is a small amount impact (160 SF) from roadway slope work. Permanent stream
impacts will result from constructing the new bridge abutments, placing stone for scour protection and the wildlife shelf, and minor grading within the stream channel. Temporary impacts will result from stream diversion and access during construction. Other project alternatives (66-foot span bridge, phased construction, and temporary bridge during construction) would have a greater amount of wetland and stream impact.

An ARM fund payment of \$2,787 is proposed to mitigate for the 538 SF of permanent PRA wetland impact. The stream impacts are assumed to be self-mitigating since the design is an improvement to hydraulic capacity, aquatic organism passage, and geomorphic compatibility. Less than 200 LF of stream channel and bank impact is proposed.

The meeting was then opened to comments and discussion.

Karl Benedict (NHDES)

- The project appears to meet Env-Wt 904.09.
- Asked if bank linear footage was included in impact calculations. Suggested showing top of bank (TOB) and ordinary high water (OHW) overlayed on plan.
 - Jenn Riordan (GM2) responded that the bank linear footage was included. There is no bank impact area since there is no defined bank, only floodplain wetland (TOB and OHW are the same).
- Asked about a restoration plan for the temporary bridge.
 - Jenn Riordan clarified that a temporary bridge is not proposed. This was evaluated as an alternative traffic control measure. The proposed project involves closing the bridge and detouring traffic during construction.
- Asked if streambed simulation can be included. Need to see a cross-section of the proposed riprap in the channel. Could stream simulation be incorporated on top of the riprap?
 - GM2 will look into this and address in the Wetlands Permit application.

Mary Ann Tilton (NHDES)

- Agree with Karl's comments. No additional comments.

Seta Detzel (NHDES)

- Asked what several of the lines on the wetland impact plan represent.
 - There was discussion between Andrew O'Sullivan, Tom Levins, and Jenn Riordan. The final plans should clearly indicate the proposed bridge abutments, widening, and other items.
- The project appears to meet avoidance and minimization measures and Env-Wt 904.09 and would be considered self-mitigating for the stream impacts.
- Need to breakout PRA wetland impacts separately and mitigate for those impacts.
- Final NHFG consultation may change mitigation determination.

Kevin Newton (NHFG)

- Were any new species included on the updated NHB report?
 - o Jenn Riordan responded that bridle shiner was added. This is a historic record.

Melissa Winters (NHFG)

• Emphasized that NHFG should be contacted when a new NHB report is requested or if listed species are observed at sites. Rare species occurrences must be reported to NHFG, along with photos to assist in species identification.

Jared Lamy (NHFG)

• No comments

Jean Brochi (EPA)

• No comments

Hampton-Portsmouth, 26485A (X-A005(269)):

Christine Perron provided an overview of the project, which addresses the second segment of the 9.6-mile Hampton Branch Rail Corridor. The first segment (7.9 miles) was addressed under NHDOT project Hampton-Portsmouth 26485. The current project, 26485A, consists of approximately 1.7 miles beginning at the north side of Drakeside Road in Hampton and continuing north-northeast to the Hampton/North Hampton town line.

The project is being designed by GPI and MJ is completing the environmental review. The purpose of the project is to improve the condition of the trail to accommodate bicycles and pedestrians. This segment of the rail corridor was purchased from Pan Am Railways for the purpose of creating a recreational trail. The rail corridor is currently being used for recreation informally but does not have a consistent surface or width, has two unsafe bridge crossings, and has flooding and drainage issues.

This is one of four rail trail projects in the NHDOT Ten Year Plan that are intended to comprise the off-street portion of the NH Seacoast Greenway. The first of these projects, Hampton-Portsmouth 26485, was reviewed and permitted in 2022 and that project is now under construction. Two other segments of corridor consist of 2.3 miles between Hampton and Hampton Falls (Project 43537), and 2 miles in Seabrook (Project 42609). Each of these projects has independent utility, with access points available for each segment to be utilized on its own, and each segment is undergoing separate permitting efforts. The project being discussed today is scheduled to advertise in September 2024. The remaining two projects are not scheduled for construction until 2030 or later.

The goals for today's meeting are to get input on the proposed design and preliminary impacts and to confirm the mitigation approach that will be required.

Tim Whitney provided an overview of proposed improvements, which will consist of vegetation clearing, rail tie removal, closed system drainage upgrades, surface drainage re-grading, profile changes, providing new bridge decks on two bridges, and resurfacing of the trail surface. The final trail surface will be a 12 FT wide stone dust trail.

Drainage upgrades will include the replacement of an existing closed drainage system under the railroad that begins behind Hannaford along Route 1 and flows southerly for approximately a 0.5 mile and outlets to the west behind Depot Square. This segment of the trail has drainage and

NHDES AQUATIC RESOURCE MITIGATION FUND WETLAND PAYMENT CALCULATION ***INSERT AMOUNTS IN YELLOW CELLS***

1	Convert square feet of impact to acres:				
INSERT SQ FT OF IMPACT	Square feet of impact =	538.00			
		43560.00			
	Acres of impact =	0.0124			
	Total Wetland Credits =	0.0124			
2	Determine acreage of wet	land construct	ion:		
	Forested wetlands:	0.0185			
	Tidal wetlands:	0.0371			
	All other areas:	0.0185			
3	Wetland construction cost	:			
	Forested wetlands:	\$2,008.18			
	Tidal Wetlands:	\$4,016.36			
	All other areas:	\$2,008.18			
4	Land acquisition cost (See	land value tab	le):		
INSERT LAND VALUE	Town land value:	16965			
FROM TABLE WHICH	Forested wetlands:	\$314.30			
ADDEADS TO THE LEFT					
APPEARS IU THE LEFT.	lidal wetlands:	\$628.59			
(Insert the amount do not	All other areas:	\$628.59 \$314.30			
(Insert the amount do not copy and paste.)	All other areas:	\$628.59 \$314.30			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs:	\$628.59			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland:	\$628.59 \$314.30 \$2,322.47			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands:	\$628.59 \$314.30 \$2,322.47 \$4,644.95			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t :			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands: All other areas:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99 \$464.49			
(Insert the amount do not copy and paste.) 5	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands: All other areas:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99 \$464.49			
APPEARS TO THE LEFT. (Insert the amount do not copy and paste.) 5 6	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands: All other areas: TOTAL ARM PAYMENT***	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99 \$464.49			
APPEARS TO THE LEFT. (Insert the amount do not copy and paste.) 5 6	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands: All other areas: TOTAL ARM PAYMENT*** Forested wetlands:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99 \$464.49 \$464.49			
APPEARS TO THE LEFT. (Insert the amount do not copy and paste.) 5 6	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands: All other areas: TOTAL ARM PAYMENT*** Forested wetlands:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99 \$464.49 \$464.49			
APPEARS TO THE LEFT. (Insert the amount do not copy and paste.) 5 6	All other areas: Construction + land costs: Forested wetland: Tidal wetlands: All other areas: NHDES Administrative cos Forested wetlands: Tidal wetlands: All other areas: TOTAL ARM PAYMENT*** Forested wetlands: Tidal wetlands:	\$628.59 \$314.30 \$2,322.47 \$4,644.95 \$2,322.47 t: \$464.49 \$928.99 \$464.49 \$928.99 \$464.49 \$2,786.97 \$5,573.94			

NH Route 152 over the North River Bridge Replacement Nottingham 40612

WETLAND DELINEATION REPORT

NH Department of Transportation 7 Hazen Drive Concord, NH 03302

GM2 Associates, Inc.

January 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	METHODOLOGY	. 1
3.0	SITE DESCRIPTION	. 1
4.0	SUMMARY OF WETLAND RESOURCES	. 2
	4.1. North River (OHW)	. 2
	4.2. Wetland 4 and Wetland 5 (Flag Series A & Flag Series B)	. 4
	4.3. Wetland 3 and Wetland 6 (Flag Series C & Flag Series D)	. 6
5.0	STREAM CROSSING ASSESSMENT	. 7
6.0	REFERENCES	. 9

APPENDICES

- A. Wetland Delineation Map
- B. Wetland Determination Data Forms
- C. NHDES Functional Assessment Worksheet

1.0 INTRODUCTION

This report provides a summary of the wetland resources that were delineated for the NH Route 152 crossing over the North River in Nottingham, New Hampshire. The project involves the replacement of the existing bridge (Bridge No. 141/127) that carries NH Route 152 traffic over the North River.

2.0 METHODOLOGY

The study area for the wetland delineation included approximately 100 feet east (upstream) and 100 feet west (downstream) of the crossing and approximately 175 feet north and 370 feet south of the crossing along NH Route 152 (refer to Wetland Delineation Map in Appendix A for the wetland delineation limits).

The delineation was completed on May 31, 2019 by Jennifer Riordan (NH Certified Wetland Scientist #269). Wetland boundaries were field checked and updated on December 7, 2023 by Jennifer Riordan and Ethan Maskiell of GM2 Associates, Inc. (GM2). The wetland delineation was conducted in accordance with the US Army Corps of Engineers (USACE) 1987 Methodology and the USACE Northcentral and Northeast Regional Supplement (2012). Individually-labeled flags were placed in the field to designate the wetland resource boundaries and the flags were survey located. Individually-labeled flags placed in the field during the December 7, 2023 site visit were located with a Trimble Geo7x GPS unit. Ordinary high water (OHW) was also located within the project area. USACE wetland determination data forms were completed in 2019 and 2023 and are included in Appendix B.

Federal wetland classifications were assigned in accordance with "Classification of Wetlands and Deepwater Habitats of the United States" (Federal Geographic Data Committee, 2013). Wetland functions were assessed in accordance with the USACE New England District Highway Methodology Workbook Supplement (1999). A NH Department of Environmental Services Functional Assessment worksheet was completed and is included in Appendix C.

The wetland delineation was conducted during normal conditions, based on a review of the U.S. Drought Monitor map.

3.0 SITE DESCRIPTION

The study area includes the North River, adjacent floodplain wetlands, a powerline right-of-way, and forested upland areas. The area adjacent to the bridge is mostly wetland. Forested upland is located in the southeastern portion of the study area. Tree species within the forested areas include white pine (*Pinus strobus*), northern red oak (*Quercus rubra*), red maple (*Acer rubrum*), and eastern hemlock (*Tsuga canadensis*).

The surrounding area consists of undeveloped forested land and wetlands, with scattered rural residential areas and commercial/industrial development. The powerline right-of-way runs east to west, north of the bridge. A house and daycare are located southeast of the project area and the Nottingham Elementary School is further south.

Conservation land is located on the west side of NH Route 152 (Fernald Lumber property, locally known as Mulligan Forest). The easement is held by the Society for the Protection of NH Forests.

The portion of the North River within the project area has a Zone A floodplain but there is no regulatory floodway, based on a review of the current FEMA Flood Insurance Rate Map.

4.0 SUMMARY OF WETLAND RESOURCES

4.1. North River (OHW)

Classification:

riverine, lower perennial, unconsolidated bottom, permanently flooded (R2UBH)

Ordinary high water (OHW) of the North River was delineated as it flows from east to west at the crossing. The segment of the North River channel under and adjacent to the bridge varies from approximately 30 feet to 45 feet wide. During the site visit in May 2019, the water was approximately 3 to 6 feet deep. The substrate is mucky and mostly consists of sand. Top of bank (TOB) was not delineated since there is no defined bank for the segment of the North River within the project area. Floodplain wetlands extend from the stream, with no observable break in slope. Water in the channel has a very slow velocity and when water levels are high both the channel and surrounding wetlands are inundated.

Vegetation within the river channel includes scattered yellow pond-lily (*Nuphar variegata*) and pickerelweed (*Pontederia cordata*). Vegetation adjacent to the channel includes speckled alder (*Alnus incana*), silky dogwood (*Cornus amomum*), broadleaf meadowsweet (*Spiraea latifolia*), sweetgale (*Myrica gale*), coastal sweet-pepperbush (*Clethra alnifolia*), royal fern (*Osmunda regalis*), and tussock sedge (*Carex stricta*).

Functions provided by the North River include ecological integrity, fish habitat, noteworthiness, production export, scenic quality, uniqueness/heritage, wetland-based recreation, and wetland-dependent wildlife habitat. All of these are provided at the principal level except scenic quality and recreation.

North River View east (upstream) from bridge Photo taken 5/31/19 Nottingham 40612 Wetland Delineation Report NH Route 152 over the North River Bridge Replacement

North River View west (downstream) from bridge Photo taken 5/31/19

North River (upstream) at bridge View northwest Photo taken 5/31/19

4.2. Wetland 4 and Wetland 5 (Flag Series A & Flag Series B)

Classification:

palustrine, emergent, persistent, seasonally flooded/saturated (PEM1E) palustrine, scrub-shrub, broad leaved deciduous, seasonally flooded/saturated (PSS1E) palustrine, forested, broad-leaved deciduous, seasonally flooded/saturated (PFO1E)

Wetland 4 (Flag Series A-1 to A-8) is an emergent/scrub-shrub wetland located northwest of Bridge No. 141/127, adjacent to the North River and NH Route 152. Approximately 2 to 4 inches of surface water was present in some areas during the May 2019 site visit, with saturated soils in the remaining areas. Vegetation within the wetland is maintained for the powerline right-of-way.

Wetland 5 (Flag Series B-1 to B-9 and B-100 to B-104) is an emergent/scrub-shrub wetland located southwest of Bridge No. 141/127. The eastern edge of the wetland (near NH Route 152) is forested.

Vegetation in Wetland 4 and Wetland 5 includes broadleaf meadowsweet, coastal sweet-pepperbush, northern arrowwood (*Viburnum recognitum*), royal fern, swollen-beaked sedge (*Carex utriculata*), and tussock sedge. The forested portion of Wetland 5 is vegetated with red maple, highbush blueberry (*Vaccinium corymbosum*), and cinnamon fern (*Osmundastrum cinnamomeum*), with white pine and northern red oak at the edge.

Functions provided by Wetlands 4 and 5 include ecological integrity, flood storage, groundwater recharge, noteworthiness, nutrient trapping, production export, scenic quality, sediment trapping, shoreline anchoring, uniqueness/heritage, wetland-based recreation, and wetland-dependent wildlife habitat. All of these except groundwater recharge, scenic quality, and recreation are provided at the principal level.

Wetlands 4 and 5 extend in a westerly and southwesterly direction adjacent to the North River, beyond the project limits.

Wetland 4 (Flag Series A) View northwest from bridge Photo taken 7/9/19

Nottingham 40612 Wetland Delineation Report NH Route 152 over the North River Bridge Replacement

Wetland 5 (Flag Series B) southwest of bridge View southwest Photo taken 5/31/19

Wetland 5 (Flag Series B) southwest of bridge View south towards forested portion Photo taken 5/31/19

4.3. Wetland 3 and Wetland 6 (Flag Series C & Flag Series D)

Classification:

palustrine, emergent, persistent, seasonally flooded/saturated (PEM1E) palustrine, scrub-shrub, broad leaved deciduous, seasonally flooded/saturated (PSS1E) palustrine, forested, broad-leaved deciduous, seasonally flooded/saturated (PFO1E)

Wetland 3 (Flag Series C-1 to C-7) is an emergent/scrub-shrub wetland located northeast of Bridge No. 141/127, adjacent to the north side of North River.

Wetland 6 (Flag Series D-1 to D-8) is an emergent/scrub-shrub wetland adjacent to the southeast side of Bridge No. 141/127. The southern edge of the wetland is forested.

Wetlands 3 and 6 are vegetated with red maple, broadleaf meadowsweet, coastal sweet-pepperbush, northern arrowwood, royal fern, and tussock sedge. The forested portion of Wetland 6 is vegetated with red maple, winterberry holly (*llex* verticillata), highbush blueberry (*Vaccinium corymbosum*), three-leaved goldthread (*Coptis trifolia*), and cinnamon fern, with white pine at the edge.

Functions provided by Wetlands 3 and 6 include ecological integrity, flood storage, groundwater recharge, noteworthiness, nutrient trapping, production export, scenic quality, sediment trapping, shoreline anchoring, uniqueness/heritage, wetland-based recreation, and wetland-dependent wildlife habitat. All of these except groundwater recharge, scenic quality, and recreation are provided at the principal level.

Wetlands 3 and 6 extend in an easterly direction adjacent to the North River, beyond the project limits.

Wetland 3 (Flag Series C) northeast of bridge and north of the North River View north Photo taken 5/31/19

Wetland 6 (Flag Series C) southeast of bridge and south of the North River with forested portion further south View southeast Photo taken 5/31/19

5.0 STREAM CROSSING ASSESSMENT

The bridge to be replaced (Bridge No. 141/127) carries NH Route 152 over the North River. The watershed size at the crossing is approximately 6,810 acres (10.64 mi²), making it a Tier 3 crossing. The North River is also a NH Designated River. In accordance with Env-Wt 900, a stream crossing assessment was conducted utilizing a combination of field observations and desktop analysis using aerial imagery and LiDAR data available from NH GRANIT. Field measurements of bankfull width, bankfull depth, and flood prone width were not able to be taken at the time of the site visits on May 31, 2019 and December 7, 2023 due to the depth of the river and adjacent floodplain wetlands, as well the mucky substrate.

A powerline right-of-way and two large adjacent emergent/scrub-shrub wetlands are located on the northern side of the river with scattered areas of forested upland beyond. The southern side also has two large adjacent emergent/scrub shrub wetlands with areas of forested wetland and upland further south. Vegetation adjacent to the channel includes speckled alder, silky dogwood, red maple, broadleaf meadowsweet, sweetgale, coastal sweetpepperbush, royal fern, and tussock sedge, with yellow pond-lily and pickerelweed present in the channel.

Stream crossing assessment measurements of bankfull width and flood prone width were completed using NH GRANIT LiDAR data for two segments of the river: the NH Route 152 crossing, located approximately 100 feet to approximately 200 feet upstream of the bridge; and a reference reach located approximately 900 feet to 1,000 feet upstream of the bridge (refer to Tables 5-1 and 5-1). The widths that were determined using desktop data and maps were consistent with field observations. The predicted bankfull width based on the New Hampshire 2005 Regional Hydraulic Geometry Curves is 39.7 feet, which is also consistent with the values measured using LiDAR maps.

Water depth observed at the time of the site visits ranged from approximately 3 to 6 feet. Maximum bankfull depth was estimated based on the water depths observed during the site visits and a mean bankfull depth of 4.5 feet was used. The mean bankfull depth predicted by the NH Regional Hydraulic Curves is 2.4 feet, however this value appears to be low based on site observations.

Substrate at the crossing location consists of mostly sand with muck/organic material on top, based on field observations.

	Cross Section 1	Cross Section 2	Cross Section 3	Range	Average
Bankfull Width*	31 feet	30 feet	27 feet	27 – 31 feet	29.3 feet
Mean Bankfull	4.5 feet	4.5 feet	4.5 feet	4.5 feet	4.5 feet
Depth**					
Width to Depth	6.9	6.7	6.0	6.0 - 6.9	6.5
Ratio					
Max Bankfull	6 feet	6 feet	6 feet	6 feet	6 feet
Depth**					
Flood Prone	530 feet	443 feet	460 feet	443 – 530 feet	478 feet
Width*					
Entrenchment	17.1	14.8	17.0	14.8 – 17.1	16.3
Ratio					

 Table 5-1

 North River – Crossing Location (NH Route 152 Bridge)

*Bankfull width and flood prone width were estimated using LiDAR elevation data in GRANIT, combined with aerial photographs, FEMA floodplain maps, and site observations.

**Mean and maximum bankfull depths were estimated based on site observations.

	Cross Section 1	Cross Section 2	Cross Section 3	Range	Average
Bankfull Width*	47 feet	53 feet	51 feet	47 – 53 feet	50.3 feet
Mean Bankfull	4.5 feet	4.5 feet	4.5 feet	4.5 feet	4.5 feet
Depth**					
Width to Depth	10.4	11.8	11.3	10.4 - 11.8	11.2
Ratio					
Max Bankfull	6 feet	6 feet	6 feet	6 feet	6 feet
Depth**					
Flood Prone	700 feet	704 feet	773 feet	700 – 773 feet	726 feet
Width*					
Entrenchment	14.9	13.3	15.2	13.3 - 15.2	14.5
Ratio					

Table 5-2 North River – Reference Reach

*Bankfull width and flood prone width were estimated using LiDAR elevation data in GRANIT, combined with aerial photographs, FEMA floodplain maps, and site observations.

**Mean and maximum bankfull depths were estimated based on site observations.

Sinuosity was measured along an approximate 1,600-foot long segment of the North River in GIS using LiDAR elevation data and orthoimagery. This segment is located upstream of Bridge No. 141/127 and includes both the crossing location and reference reach. Based on these measurements, the sinuosity was estimated to be 1.2.

Due to the high entrenchment ratio and a width to depth ratio of less than 12, the Rosgen classification for the segment of the North River near the project is Type E. The measured sinuosity (1.2) is slightly lower than a typical Type E stream (>1.5), however the overall features of the stream, including its wide floodplain wetlands and narrow, deep channel, are characteristic of a Type E stream.

6.0 **REFERENCES**

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Federal Geographic Data Committee. 2013. *Classification of wetlands and deepwater habitats of the United States*. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.

U.S. Army Corps of Engineers. 2012. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0)*, ed. J. S. Wakeley, R. W. Lichvar, C. V. Noble, and J. F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

U.S. Army Corps of Engineers New England District. 1999. *The Highway Methodology Workbook Supplement: Wetland Functions and Values.* NEDEP-360-1-30a.

APPENDIX A

Wetland Delineation Map

Wetland Delineation Map NH Route 152 over the North River Bridge Replacement Nottingham 40612

APPENDIX B

Wetland Determination Field Data Forms

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Nottingham 40612	City/County: Nottingham / Rockingham Sar	mpling Date: 5/31/19
Applicant/Owner: <u>NHDOT</u>	State: NH	Sampling Point: DP-1
Investigator(s): Jenn Riordan	_Section, Township, Range:	
Landform (hillside, terrace, etc.): floodplain wetland	Local relief (concave, convex, none): <u>concave</u>	Slope (%): <1
Subregion (LRR or MLRA): LRR R Lat: 43.149 N	Long: 71.114 W	Datum:
Soil Map Unit Name: 97 - Freetown & Natchaug mucky peats, ponder	d, 0-2% slopes NWI classificatio	n: PEM1E
Are climatic / hydrologic conditions on the site typical for this time of y	/ear? Yes X No (If no, explain in Re	emarks.)
Are Vegetation, Soil, or Hydrologysignifican	tly disturbed? Are "Normal Circumstances" present	? Yes <u>X</u> No
Are Vegetation, Soil, or Hydrologynaturally	problematic? (If needed, explain any answers in R	emarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, imp	oortant features, etc.

Hydrophytic Vegetation Present?	Yes X	No	Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: Series A
Hydric Soil Present?	Yes X	No	
Wetland Hydrology Present?	Yes X	No	
Remarks: (Explain alternative procedur	es here or in a	separate report.)	d near flag A-7.
Vegetation is maintained for powerline r	ght-of-way. D	lata point is locate	

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
X Surface Water (A1) Water-Stained Leaves (B9)	Drainage Patterns (B10)
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) X Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Living	Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Se	Dils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes X No Depth (inches): 2-4"	
Water Table Present? Yes X No Depth (inches): surface	
Saturation Present? Yes X No Depth (inches): surface	Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect	tions), if available:
Remarks:	
2-4 inches of surface water present in areas, remaining areas have saturated soils	

VEGETATION – Use scientific names of plants.

Sampling Point: DP-1

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.				
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 6 (A)
3.		·		
4.		·		Species Across All Strata: 6 (B)
5.				Benerit of Deminent Creation
6.				That Are OBL, FACW, or FAC: 100.0% (A/B)
7.		·		Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =
1. Spiraea latifolia	38	Yes	FACW	FACW species x 2 =
2. Clethra alnifolia	38	Yes	FAC	FAC species x 3 =
3. Viburnum recognitum	20	Yes	FAC	FACU species x 4 =
4.				UPL species x 5 =
5.				Column Totals: (A) (B)
6.				Prevalence Index = B/A =
7.				Hydrophytic Vegetation Indicators:
	96	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Osmunda spectabilis	20	Yes	OBL	3 - Prevalence Index is ≤3.0 ¹
2. Carex utriculata	38	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Carex stricta	20	Yes	OBL	data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric call and watland hydrology must
6.		·		be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree Weedy plants 2 in (7.6 cm) or more in diameter
9.				at breast height (DBH), regardless of height.
10.				Sanling/shrub Woody plants loss than 3 in DRH
11.				and greater than or equal to 3.28 ft (1 m) tall.
12.				Horb All horbaccous (non woody) plants, regardless
	78	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			-
No vegetation in tree and woody vine strata				

SOIL	
------	--

Profile De	escription: (Describe	to the de	pth needed to docu	iment th	e indicate	or or con	firm the absence	of indicate	ors.)	
Depth	Matrix		Redo	x Feature	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-14	10YR 2/1	80	10YR 2/2	20		М	Mucky Loam/Clay	sligh	nt hydrogen sulfide odor	r
								0	, ,	
¹ Type: C=	Concentration, D=Dep	pletion, RN	/I=Reduced Matrix, C	S=Cover	red or Coa	ated Sand	l Grains. ² Lo	cation: PL=	Pore Lining, M=Matrix.	
Hydric So	oil Indicators:						Indicators for	or Problem	atic Hydric Soils ³ :	
Histo	sol (A1)		Polyvalue Belov	v Surface	e (S8) (LR	R R,	2 cm Mu	uck (A10) (L	.RR K, L, MLRA 149B)	
Histic	: Epipedon (A2)		MLRA 149B)				Coast P	rairie Redo	(A16) (LRR K, L, R)	
Black	Histic (A3)		Thin Dark Surfa	ce (S9) (LRR R, N	ILRA 149	B) 5 cm Μι	ucky Peat of	r Peat (S3) (LRR K, L, I	R)
X Hydro	ogen Sulfide (A4)		High Chroma Sa	ands (S1	1) (LRR Þ	K, L)	Polyvalu	ie Below Su	ırface (S8) (LRR K, L)	
Strati	fied Layers (A5)		Loamy Mucky M	lineral (F	1) (LRR #	(, L)	Thin Da	rk Surface (S9) (LRR K, L)	
Deple	eted Below Dark Surfac	ce (A11)	Loamy Gleved I	Matrix (F2	2)	. ,	Iron-Mar	nganese Ma	asses (F12) (LRR K, L,	R)
 Thick	Dark Surface (A12)	()	Depleted Matrix	(F3)	,		Piedmor	nt Floodplai	n Soils (F19) (MLRA 14	, 9B)
Sand	v Mucky Mineral (S1)		 Redox Dark Sur	face (F6))		Mesic S	, podic (TA6)	(MLRA 144A. 145. 149	9B)
Sand	v Gleved Matrix (S4)		Depleted Dark S	Surface (I	, F7)		Red Par	ent Materia	l (F21)	,
Sand	v Redox (S5)		Redox Depressi	ions (F8)	,		Verv Sh	allow Dark S	Surface (TF12)	
Stripr	ped Matrix (S6)		Marl (F10) (I RE	5 K I)			Other (F	xnlain in Re	emarks)	
Ourpp	Surface (S7)			(IX, E)						
³ Indicator	s of hydrophytic yogots	tion and y	votland hydrology mu	ist bo pro	sont unk	nee dietur	had ar problematic			
Postrictiv	s of hydrophytic vegeta		veliand hydrology mu	ist be pre	sent, unit	ess disturi				
Tuno	re Layer (il observed)	•								
Type.										
Depth (i	inches):						Hydric Soil Pr	esent?	Yes X No	
Remarks:							-			
This data	form is revised from N	orthcentra	I and Northeast Regi	onal Sup	plement \	/ersion 2.	0 to reflect the NR	CS Field In	dicators of Hydric Soils	
version 7.	0 March 2013 Errata. ((http://www	v.nrcs.usda.gov/Inter	net/FSE_		ENTS/nrcs	s142p2_051293.d	ocx)		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Nottingham 40612	City/County: Nottingham / Rockingham	Sam	Sampling Date: 5/31/19		
Applicant/Owner: <u>NHDOT</u>		Stat	.e: NH	Sampling Point:	DP-2
Investigator(s): Jenn Riordan		_Section, Township, Range:			
Landform (hillside, terrace, etc.): terrace		Local relief (concave, convex, none): <u>convex</u>	x	Slope (%)):5%
Subregion (LRR or MLRA): LRR R	Lat: <u>43.149 N</u>	Long: 71.114 W		Datum:	
Soil Map Unit Name: 298 - Pits, sand and gra	vel	NWI c	lassification:	Not mapped	
Are climatic / hydrologic conditions on the site	typical for this time of	year? Yes X No (If no, ex	plain in Rem	narks.)	
Are Vegetation X, Soil , or Hydr	ologysignificar	ntly disturbed? Are "Normal Circumstance	s" present?	Yes X	No
Are Vegetation, Soil, or Hydr	ologynaturally	problematic? (If needed, explain any and	swers in Ren	narks.)	
SUMMARY OF FINDINGS – Attach	site map showing	sampling point locations, transe	cts, impo	ortant features	, etc.
Hydrophytic Vegetation Present? Y	esNo_X	Is the Sampled Area			
Hydric Soil Present? Y	es No X	within a Wetland? Yes	No	<u>×</u>	
Wetland Hydrology Present? Y	es No X	If yes, optional Wetland Site ID:			

Remarks: (Explain alternative procedures here or in a separate report.)

Vegetation is maintained for powerline right-of-way. Data point located north of flag A-7.

HYDROLOGY

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required;	check all that apply)		Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Livir	ng Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4))	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled	l Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)			FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes No	X Depth (inches):		
Water Table Present? Yes No	X Depth (inches):		
Saturation Present? Yes No	X Depth (inches):	Wetland Hy	/drology Present? Yes No X
(includes capillary fringe)		_	
Describe Recorded Data (stream gauge, monitor	ing well, aerial photos, previous insp	ections), if ava	ilable:
Remarks:			
No wetland hydrology indicators observed			

VEGETATION – Use scientific names of plants.

Sampling Point: DP-2

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant	Indicator Status	Dominance Test worksheet:
1		Opecies:	Otatus	Dominance rest worksheet.
2.		·		Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3.				Tatal Number of Dominant
4.				Species Across All Strata:2 (B)
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2				FAC species 10 x 3 = 30
3				FACU species 40 x 4 =160
4				UPL species 38 x 5 =190
5				Column Totals: 88 (A) 380 (B)
6				Prevalence Index = B/A = 4.32
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size:5')				2 - Dominance Test is >50%
1. Rubus sp.	10	No		3 - Prevalence Index is ≤3.0 ¹
2. <u>Betula populifolia</u>	10	No	FAC	4 - Morphological Adaptations ¹ (Provide supporting
3. Comptonia peregrina	38	Yes	UPL	data in Remarks or on a separate sheet)
4. Solidago canadensis	20	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Populus tremuloides	10	No	FACU	¹ Indicators of hydric soil and wetland hydrology must
6. Pteridium aquilinum	10	No	FACU	be present, unless disturbed or problematic.
7. Agrostis sp.	63	Yes		Definitions of Vegetation Strata:
8. Unknown sedge (no seed)	20	No		Tree – Woody plants 3 in (7.6 cm) or more in diameter
9				at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	181	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3 28 ft in
1				height.
2				
3				Hydrophytic Vegetation
4				Present? Yes No X
		=Total Cover		
		-		

Remarks: (Include photo numbers here or on a separate sheet.)

No vegetation in tree, shrub, and woody vine strata. Vegetation is maintained for powerline right-of-way. Agrostis sp. and unknown sedge not able to be identified (no seed).

Sampling Point:

1 1	P-/

Depuin Treature Texture Remarks 0-14 10YR 3/2 50	Depin Matrix Nector (moist) % Type1 Loc2 Texture Remark 0-14 10YR 3/2 50
0-14 10YR 3/2 50 10YR 3/3 50 10YR 3/4 50 10YR 3/4 50 10YR 3/4 50	0-14 10YR 3/2 50 Sandy 10YR 3/3 Sol Sandy 10YR 3/3 Sol Sandy 10YR 3/3 Sol Sandy 10YR 3/3 Sol Sol 10YR 3/4 Polyvalue Below Surface (Sa) (LRR R, MLRA 149B) 10YR 3/
0-14 10YR 3/2 50 Sandy 10YR 3/3 50 Sandy Sandy 10YR 3/3 So Sandy Sandy McKatas 10Yrpe: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. *Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Polyalue Below Surface (S8) (LRR R, I Sandy McKatas Sandy McKatas 11/10 Eark Surface (S9) MLRA 149B) Coast Praine Redux Chait (Atas) Sondy McKatas 11/10 Eark Surface (S9) Indicators for Problematic Hydric Soils (LRR K, L) Polyalue Below Surface (S9) (LRR K, L) Polyalue Below Surface (S9) (LRR K, L) Polyalue Below Surface (S1) (LRR K, L) <td< td=""><td>0-14 10YR 3/2 50 Sandy 10YR 3/3 50 Image: Sandy Sandy 10YR 3/3 50 Image: Sandy Sandy 10YR 3/3 50 Image: Sandy Image: Sandy 10YR 3/3 50 Image: Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy</td></td<>	0-14 10YR 3/2 50 Sandy 10YR 3/3 50 Image: Sandy Sandy 10YR 3/3 50 Image: Sandy Sandy 10YR 3/3 50 Image: Sandy Image: Sandy 10YR 3/3 50 Image: Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy
10YR 3/3 50 10YR 3/4 10YR 3/4 10YR 3/4<	10YR 3/3 50 10YR 3/3 10 10
Image:	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S3) (LRR R, MLRA 149B) Black Histic CA3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Black Histic CA3) Thin Dark Surface (S3) (LRR K, L) Polyvalue Below Surface (S3) (LRR K, L) Polyvalue Below Surface (S3) (LRR K, L, R) Statified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Statified Layers (A5) Depleted Matrix (F2) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Redox (S5) Redox Depressions (F6) Sandy Redox (S5) Redox Depressions (F6) Sandy Redox (S5) Matri (F10) (LRR K, L) Dark Surface (S7) Matrix (F2) Sandy Redox (S5) Redox Depressions (F6) Sandy Redox (S5) Matri (F10) (LRR K, L) Dark Surface (S7) Sand hard (F10) (LRR K, L) Shipped Matrix (F2) Depleted Dark Surface (T51) Dark Surface (S7) Matrix (F2) Dark Surface (S7) Matrix (F2) Dark Surface (S7) Matri (F10) (LRR K, L) Shipp	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histosol (A1) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Davidue Matrix (F2) Thin Dark Surface (A11) Davidue Matrix (F2)
Image: Soli Indicators: Image: Soli Indicators: Image: Soli Indicators: Image: Soli Indicators: Image: Soli Indicators: Indicators for Problematic Hydric Solis ¹ : Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR K, L) Image: Depieted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Image: Depieted Below Dark Surface (A12) Depieted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Mecky Matrix (S4) Depieted Matrix (F3) Sandy Mecky (S5) Redox Dark Surface (F7) Sandy Mecky (S5) Redox Dark Surface (F7) Sandy Mecky (S5) Redox Dark Surface (F7) Sandy Mecky (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type: Depieted Dark (icalean):	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) High Chroma Sands (S11) (LRR K, L) Sor Mucky Peat or Peat (S3) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 1498) Histic Epipedon (A2) MLRA 1498) Black Histic (A3) Thin Dark Surface (S9) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Dark Surface (A12) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F2) Thin Dark Surface (F6) Mesic Spoil (LRR K, L, R) Sandy Redx (S5) Redox Dark Surface (F7) Sandy Redx (S5) Redox Depressions (F8) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed):: Type: Type: Depleted The Surface (S7)	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (Matrix (F2)) Ton-Manganese Masses (F12) (F12)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Histosol (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F6) Sandy Redox (S5) Redox Dark Surface (F7) Sandy Redox (S5) Mart (F10) (LRR K, L) Stripped Matrix (S6) Mart (F10) (LRR K, L) Dark Surface (S7) The dox Dark Surface (T12) Stripped Matrix (S6) Mart (F10) (LRR K, L) Dark Surface (S7) The dox Dark Surface (T12) Type: Other (Explain in Remarks) Dark Surface (S7) The distruct or problematic.	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (A11) Denty Gleyed Matrix (F2)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (F6) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Redox (S5) Redox Depressions (F8) Stripped Matrix (S6) Mart (F10) (LRR K, L) Dark Surface (S7) Other (Explain in Remarks) Other (Explain in Remarks) Dark Surface (S7) Type:	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S7) Coater Call Content (S7)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A6) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F2) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Redox (S5) Redox Dark Surface (F7) Stripped Matrix (S4) Depleted Dark Surface (F7) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Very Shallow Dark Surface (N7)	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (F12) (Communication (F2)) Thin Dark Surface (F12) (Communication (F12))
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Coast or Coated Sand Grains. 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histosol (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Stripped Matrix (S6) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark furacherch: Trype: Thin Dark	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, ML Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (L Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L, R) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F2) Thick Dark Surface (S5) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Sandy Gleyed Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Red Parent Material (F21) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Red varent Material (F21) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) The Jack Surface (S7) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) The Jack Surface (S7) Type:	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (A11) Dom/def Matrix (F2)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Jurface (S9) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F3) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Redox (S5) Redox Depressions (F8) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Red ox Depressions (F8) Sitippe Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Polytalue Bereapt2 * Marl (F10) (LRR K, L) Dark Surface (S7) Polytalue Bereapt2 * Marl (F10) (LRR K, L) Dark Surface (S7) Polytalue Bereapt2 <td>¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (A11) Double Matric (F2)</td>	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (A11) Double Matric (F2)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, L MLRA 149B) Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Sandy Redox (S5) Redox Dark Surface (F7) Sandy Redox (S5) Matri (F10) (LRR K, L) Dark Surface (S7) Matrix (S6) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (ICR)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histosol (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR K, L) Polyvalue Below Surface (S3) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1449, 145, 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 1444, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Silt present? Yee ³ Indicators of hydrophytic vegetation and wetland hydro	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (CR)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histosol (A1) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L, R) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Polpeted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yea	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (Complexity (F2))
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histo Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, C) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (F6) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) 3 ¹ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (L Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (Content A10)
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Redox (S5) Redox Depressions (F8) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Dark Surface (S7) Type:	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (Component (A10))
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Pielmant I. Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Note X Restrictive Layer (if observed): Type: Yee Yee Yee Type: Dontht (inchapa): Yee	Hydric Soil Indicators: Indicators for Problematic Hydric S Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (CRR K, C)
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Low LAR A, Low LAR A 149B) Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Redox (S5) Redox Depressions (F8) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) Other (Explain in Remarks) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:	Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, ML Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (I Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (L Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (I
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Restrictive Layer (if observed): Type: Type:	Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (I Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LR R, K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (I
Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Thin Remarks) Other (Explain in Remarks) ************************************	Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (I Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (L Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (
Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Dark Surface (S7) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Type: Type:	Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (L Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Restrictive Layer (if observed): Type: Type:	Stratified Layers (A5)Loamy Mucky Mineral (F1) (LRR K, L)Thin Dark Surface (S9) (LRR K, Depleted Below Dark Surface (A11)Loamy Gleyed Matrix (F2)Iron-Manganese Masses (F12) (Think Dark Surface (A10)
Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149E Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (
	This is Deade Orange (A40) Deadeate is (E0) Distance (E10)
Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF12) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	I NICK DARK SUFFACE (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19)
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Very Shallow Dark Surface (TF12) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) Restrictive Layer (if observed): Type: Depth (instead): Name	Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144,
Sandy Redox (S5)Redox Depressions (F8)Very Shallow Dark Surface (TF12) Stripped Matrix (S6)Marl (F10) (LRR K, L)Other (Explain in Remarks)Other (Explain in Remarks) Dark Surface (S7) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic Restrictive Layer (if observed): Type: Darth (inshea):	Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21)
Stripped Matrix (S6)Mari (F10) (LRR K, L)Other (Explain in Remarks) 	Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (TF1
Dark Surface (S7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inshes):	Stripped Matrix (S6)Marl (F10) (LRR K, L)Other (Explain in Remarks)
³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Denth (inshee): Veg	Dark Surface (S7)
Restrictive Layer (if observed): Type: Depth (inches): Hudris Soil Present?	³ Indiasters of hydrophytic vegetation and wetland hydrology must be present, uplace disturbed or problematic
Type:	Restrictive Laver (if observed):
Denth (inches):	Type.
	Type

U.S. Army Corps of Engineers
WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region
See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Nottingham 40612	City/County: Nottingham/Rockingham	Sampling Date: 12/7/23
Applicant/Owner: NHDOT	State: NH	Sampling Point: D-Wet
Investigator(s): J.Riordan & E. Maskiell	Section, Township, Range:	
Landform (hillside, terrace, etc.): floodplain wetland Loc	al relief (concave, convex, none): <u>concave</u>	Slope %: 2
Subregion (LRR or MLRA): LRR R Lat: 43.148	Long: 71.113	Datum:
Soil Map Unit Name: 97 - Freetown and Natchaug mucky peats, ponder	d, 0 to 2 percent slopes NWI classification:	PEM1E/PFO1E
Are climatic / hydrologic conditions on the site typical for this time of year	? Yes X No (If no, e	explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly dis	turbed? Are "Normal Circumstances" prese	ent? Yes X No
Are Vegetation, Soil, or Hydrologynaturally proble	matic? (If needed, explain any answers in	Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes X No	Is the Sampled Area within a Wetland? Yes X No If yes, optional Wetland Site ID: Wetland D
Remarks: (Explain alternative procedur	es here or in a separate report.)	

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is require	ed; check all that apply)	Surface Soil Cracks (B6)	
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)	
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)	
X Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)	
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)	
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C	3) Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)	Geomorphic Position (D2)	
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)	
Sparsely Vegetated Concave Surface (B8	X FAC-Neutral Test (D5)		
Field Observations:			
Surface Water Present? Yes	No X Depth (inches):		
Water Table Present? Yes X			
Saturation Present? Yes X	tland Hydrology Present? Yes X No		
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mon	itoring well, aerial photos, previous inspections), if available:	
Remarks:			

VEGETATION – Use scientific names of plants.

Sampling Point: D-Wet

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	63	Yes	FAC	Number of Dominant Spacing
2. Pinus strobus	10	No	FACU	That Are OBL, FACW, or FAC:6 (A)
3 4				Total Number of Dominant Species Across All Strata: <u>6</u> (B)
5 6				Percent of Dominant Species That Are OBL, FACW, or FAC:100.0% (A/B)
7				Prevalence Index worksheet:
	73	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =
1. Ilex verticillata	20	Yes	FACW	FACW species x 2 =
2. Vaccinium corymbosum	10	Yes	FACW	FAC species x 3 =
3. Acer rubrum	10	Yes	FAC	FACU species x 4 =
4				UPL species x 5 =
5				Column Totals: (A)(B)
6.				Prevalence Index = B/A =
7.				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Osmundastrum cinnamomeum	38	Yes	FACW	3 - Prevalence Index is ≤3.0 ¹
2. Coptis trifolia	10	Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				<u> </u>
6.				Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3 28 ft (1 m) tall
12.				
	48	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30') 1. None				Woody vines – All woody vines greater than 3.28 ft in height.
2				Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

cription: (Describe	to the dep	th needed to docu	ument t	he indica	tor or c	onfirm the absence o	f indicators.)	
Matrix		Redo	x Featu	res				
Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rema	arks
10YR 2/2	100					Loamy/Clayey	organic r	naterial
10YR 2/1	100					Mucky Loam/Clay		
10YR 3/1	100					Mucky Sand		
				·				
	· ·							
				. <u> </u>				
	· ·			·				
oncentration, D=Dep	letion, RM	Reduced Matrix, M	/IS=Mas	ked Sand	Grains.	² Location: P	PL=Pore Lining, M=M	latrix.
Indicators:						Indicators for	or Problematic Hyd	ric Soils ³ :
(A1)	-	Dark Surface (S7)			2 cm Mu	uck (A10) (LRR K, L ,	MLRA 149B)
oipedon (A2)	-	Polyvalue Belo	w Surfa	ice (S8) (I	_RR R,	Coast P	rairie Redox (A16) (I	.RR K, L, R)
istic (A3)		MLRA 149B)			5 cm Mu	ucky Peat or Peat (S	3) (LRR K, L, R)
en Sulfide (A4)	-	Thin Dark Surf	ace (S9) (LRR R	MLRA	149B) Polyvalu	e Below Surface (S8	3) (LRR K, L)
d Layers (A5)	-	High Chroma S	Sands (S	511) (LRF	R K, L)	Thin Dai	rk Surface (S9) (LRF	R K, L)
d Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Iron-Mar	nganese Masses (F1	2) (LRR K, L, R)
ark Surface (A12)	-	Loamy Gleyed	Matrix ((F2)		Piedmor	nt Floodplain Soils (F	19) (MLRA 149B)
podic (A17)	-	Depleted Matri	x (F3)	-0)		Red Par	rent Material (F21) (c	outside MLRA 145
(A 144A, 145, 149B)	-	Redox Dark Su	urface (H	-6)		Very Sh	allow Dark Surface (F22)
Aucky Mineral (S1)	-	Depleted Dark	Surface	e(F7)		Other (E	xplain in Remarks)	
Bieyed Matrix (54)	-	Mort (E10) (LB	SIONS (F	8)		³ Indicate	ora of hydrophytic ye	actation and
(edox (35) I Matrix (S6)	-	IVIAIT (FTU) (LK	nn, L) aterial (F	21) (MI F	20 145)	wetlar	nd hydrology must be	
	-			21) (МЕ	(A 140)	unless	s disturbed or proble	matic.
Layer (if observed):							ı	
nches):						Hydric Soil Prese	nt? Yes	No X
res not observed like	ly due to s	aturation						
	Matrix Color (moist) 10YR 2/2 10YR 2/1 10YR 3/1 10YR 3/1 oncentration, D=Dep Indicators: (A1) bipedon (A2) stic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surfac ark Surface (A12) podic (A17) A 144A, 145, 149B) Mucky Mineral (S1) Bleyed Matrix (S4) Redox (S5) Matrix (S6) Layer (if observed): mches): res not observed like	Matrix Color (moist) % 10YR 2/2 100 10YR 2/1 100 10YR 3/1 100 <	Matrix Redo Color (moist) % Color (moist) 10YR 2/2 100 10YR 3/1 100	Matrix Redox Feature Color (moist) % 10YR 2/2 100 10YR 2/1 100 10YR 3/1 100 10YR 3/1	Matrix Redox Features Color (moist) % Type ¹ 10YR 2/2 100	Matrix Redox Features Color (moist) % Type ¹ Loc ² 10YR 2/2 100	Matrix Redox Features Color (moist) % Type ¹ Loc ² 10YR 2/2 100	Matrix Redox Features Color (moist) % Type ¹ Loc ² Texture Rem. 10YR 2/2 100

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R Braiset/Site: Nottingham 40612 City/County: Nottingham (20612
Project/Site: Nettingham 40612
Applicant/Owner: <u>NHDOT</u> State: <u>NH</u> Sampling Point: <u>D</u>
Investigator(s): J.Riordan & E. Maskiell Section, Township, Range:
Landform (hillside, terrace, etc.): small hillslope Local relief (concave, convex, none): none Slope %:
Subregion (LRR or MLRA): LRR R Lat: 43.148 Long: 71.113 Datum:
Soil Map Unit Name: 26A - Windsor loamy sand, 0 to 3 percent slopes NWI classification: none
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly disturbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrologynaturally problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, e
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area

Hydrophytic vegetation Present?	res		is the Sampled Area
Hydric Soil Present?	Yes	No X	within a Wetland? Yes No X
Wetland Hydrology Present?	Yes	No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedu	res here or in a	separate report.)	

HYDROLOGY

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)				
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Living R	oots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6)	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B7))Other (Explain in Remarks)		Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (Ba	FAC-Neutral Test (D5)				
Field Observations:					
Surface Water Present? Yes					
Water Table Present? Yes					
Saturation Present? Yes	No Depth (inches):	Id Hydrology Present? Yes No X			
(includes capillary fringe)					
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspe	ections), if	available:		
Remarks:					

VEGETATION – Use scientific names of plants.

Sampling Point: D-Up

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet		
1 Pinus strobus	63	Ves	FACIL	Dominance rest worksheet.		
2 Eagus grandifolia	3	No	FACU	Number of Dominant Species		
3 Ouercus rubra	3	No	FACU			
A Tsura canadansis	3	No	FACU	Total Number of Dominant Species Across All Strate: 2 (B)		
5			1400			
6				Percent of Dominant Species That Are OBL_EACW_or EAC: 50.0% (A/B)		
7.				Prevalence Index worksheet:		
	72	=Total Cover		Total % Cover of: Multiply by:		
Sapling/Shrub Stratum (Plot size: 15')				$\frac{1}{\text{OBL species}} 0 \qquad \text{x 1} = 0$		
1. Acer rubrum	10	Yes	FAC	FACW species $0 x 2 = 0$		
2. Tsuga canadensis	3	No	FACU	FAC species 13 x 3 = 39		
3. Quercus alba	3	No	FACU	FACU species 78 x 4 = 312		
4.				UPL species 0 x 5 = 0		
5.				Column Totals: 91 (A) 351 (B)		
6.				Prevalence Index = B/A = 3.86		
7.				Hydrophytic Vegetation Indicators:		
	16	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation		
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%		
1. Kalmia angustifolia	3	No	FAC	3 - Prevalence Index is ≤3.0 ¹		
2.				4 - Morphological Adaptations ¹ (Provide supporting		
3.				data in Remarks or on a separate sheet)		
4.				Problematic Hydrophytic Vegetation ¹ (Explain)		
5.						
6.				be present, unless disturbed or problematic.		
7.				Definitions of Vegetation Strata:		
8.				Tree Weady plants 2 in (7.6 cm) or more in		
9.				diameter at breast height (DBH), regardless of height.		
10				Sanling/chrub Woody plants loss than 3 in DRH		
11.				and greater than or equal to 3.28 ft (1 m) tall.		
12.				Herb - All herbaceous (non-woody) plants, regardless		
	3	=Total Cover		of size, and woody plants less than 3.28 ft tall.		
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in		
1. None				height.		
2.						
3.				Hydrophytic Vegetation		
4.				Present? Yes No X		
		=Total Cover				
Remarks: (Include photo numbers here or on a separate sheet.)						

Profile Desc	ription: (Describe	to the de	pth needed to doc	ument t	he indica	tor or co	onfirm the absence of indic	ators.)	
Depth	Matrix		Redo	x Featu	res				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-3	10YR 2/2	100					Loamy/Clayey	sandy loam	
3-10	7.5YR 4/6	100					Sandy	loamy sand	
10-14	10YR 4/6	100					Sandy	loamy sand	
		. <u> </u>							
¹ Type: C=Co	oncentration, D=Dep	letion, RM	Reduced Matrix, N	/IS=Mas	ked Sand	Grains.	² Location: PL=Pore	e Lining, M=Matrix.	-
Hydric Soil I	ndicators:						Indicators for Prol	olematic Hydric Soils	³ :
Histosol	(A1)		Dark Surface (S7)	(22) (2 cm Muck (A1	0) (LRR K, L, MLRA 1	49B)
Histic Ep	atio (A2)			w Surfa	ce (S8) (I	.RR R,	Coast Prairie R	edox (A16) (LRR K, L,	, R) K P)
	$\operatorname{Sulfide}(\Delta A)$		Thin Dark Surf) iaco (90				at of Peat (33) (LRK \mathbf{r}	Λ, Ε, Κ) (Ι)
Stratified			High Chroma S	ace (09 Sands (9) (LNN N, S11) (I RE		Thin Dark Surf		1, ⊑)
Depleted	Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LRF	R K. L)	Iron-Manganes	e Masses (F12) (LRR	K. L. R)
Thick Da	rk Surface (A12)		Loamy Gleved	Matrix ((F2)	, _/	Piedmont Floor	Iplain Soils (F19) (MLF	RA 149B)
Mesic Sp	odic (A17)		Depleted Matri	x (F3)	,		Red Parent Ma	terial (F21) (outside M	ILRA 145)
(MLR	A 144A, 145, 149B)		Redox Dark Su	urface (F	-6)		Very Shallow D	ark Surface (F22)	
Sandy M	ucky Mineral (S1)		Depleted Dark	Surface	e (F7)		Other (Explain	n Remarks)	
Sandy G	leyed Matrix (S4)		Redox Depres	sions (F	8)				
Sandy R	edox (S5)		Marl (F10) (LR	R K, L)			³ Indicators of h	/drophytic vegetation a	and
Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145)				A 145)	wetland hydrology must be present,				
B (1) (1) 1	<i></i>						unless distur	ped or problematic.	
Type:	ayer (if observed):								
Dopth (ir	abaa):						Hudria Sail Brasant2	Yee No.	v
	iches).						Hydric Soll Present?		
Remarks:									

APPENDIX C

NHDES Functional Assessment Worksheet

WETLANDS FUNCTIONAL ASSESSMENT WORKSHEET Water Division/Land Resource Management Wetlands Bureau <u>Check the Status of your Application</u>

RSA/Rule: RSA 482-A / Env-Wt 311.03(b)(10); Env-Wt 311.10

APPLICANT LAST NAME, FIRST NAME, M.I.: NHDOT

As required by Env-Wt 311.03(b)(10), an application for a standard permit for minor and major projects must include a functional assessment of all wetlands on the project site as specified in Env-Wt 311.10. This worksheet will help you compile data for the functional assessment needed to meet federal (US Army Corps of Engineers (USACE); if applicable) and NHDES requirements. Additional requirements are needed for projects in tidal area; please refer to the <u>Coastal Area</u> <u>Worksheet (NHDES-W-06-079)</u> for more information.

Both a desktop review and a field examination are needed to accurately determine surrounding land use, hydrology, hydroperiod, hydric soils, vegetation, structural complexity of wetland classes, hydrologic connections between wetlands or stream systems or wetland complex, position in the landscape, and physical characteristics of wetlands and associated surface waters. The results of the evaluation are to be used to select the location of the proposed project having the least impact to wetland functions and values (Env-Wt 311.10). This worksheet can be used in conjunction with the <u>Avoidance and Minimization Written Narrative (NHDES-W-06-089)</u> and the <u>Avoidance and Minimization</u> <u>Checklist (NHDES-W-06-050)</u> to address Env-Wt 313.03 (Avoidance and Minimization). If more than one wetland/ stream resource is identified, multiple worksheets can be attached to the application. All wetland, vernal pools, and stream identification (ID) numbers are to be displayed and located on the wetlands delineation of the subject property.

SECTION 1 - LOCATION (USACE HIGHWAY METHODOLOGY)				
ADJACENT LAND USE: transportation, pow	verline ROW, forest, rural residential			
CONTIGUOUS UNDEVELOPED BUFFER ZO	NE PRESENT? 🗌 Yes 🔀 No			
DISTANCE TO NEAREST ROADWAY OR OT	HER DEVELOPMENT (in feet): 10			
SECTION 2 - DELINEATION (USACE HIGH)	VAY METHODOLOGY; Env-Wt 311.10)			
CERTIFIED WETLAND SCIENTIST (if in a non-tidal area) or QUALIFIED COASTAL PROFESSIONAL (if in a tidal area) who prepared this assessment: Jennifer Riordan (CWS #269)				
DATE(S) OF SITE VISIT(S): 5/31/2019,12/7/2023 DELINEATION PER ENV-WT 406 COMPLETED? Yes No				
CONFIRM THAT THE EVALUATION IS BASED ON:				
⊠ Office and				
Field examination.				
METHOD USED FOR FUNCTIONAL ASSESSMENT (check one and fill in blank if "other"):				
USACE Highway Methodology.				
Other scientifically supported method (enter name/ title):				

SECTION 3 - WETLAND RESOURCE SUMMARY (USACE HIGHWAY METHODOLOGY; Env-Wt 311.10)					
WETLAND ID: North River, Flag Series A, B, C, & D	LOCATION: (LAT/ LONG) 43.15/71.11				
WETLAND AREA: unknown	DOMINANT WETLAND SYSTEMS PRESENT: riverine, palustrine				
HOW MANY TRIBUTARIES CONTRIBUTE TO THE WETLAND?	COWARDIN CLASS:				
unknown	R2UBH, PEM/PSS1E, PFO1E				
IS THE WETLAND A SEPARATE HYDRAULIC SYSTEM?	IS THE WETLAND PART OF:				
Yes 🛛 No	🔀 A wildlife corridor or 🔲 A habitat island?				
if not, where does the wetland lie in the drainage basin?	IS THE WETLAND HUMAN-MADE?				
lower	Yes 🛛 No				
IS THE WETLAND IN A 100-YEAR FLOODPLAIN?	ARE VERNAL POOLS PRESENT?				
🖂 Yes 🔲 No	Yes No (If yes, complete the Vernal Pool Table)				
ARE ANY WETLANDS PART OF A STREAM OR OPEN-WATER SYSTEM? 🔀 Yes 🔲 No	ARE ANY PUBLIC OR PRIVATE WELLS DOWNSTREAM/ DOWNGRADIENT? 🔀 Yes 🔲 No				
PROPOSED WETLAND IMPACT TYPE:	PROPOSED WETLAND IMPACT AREA:				
SECTION 4 - WETLANDS FUNCTIONS AND VALUES (USACE H	IIGHWAY METHODOLOGY; Env-Wt 311.10)				
The following table can be used to compile data on wetlands functions and values. The reference numbers indicated in the "Functions/ Values" column refer to the following functions and values:					
Ecological Integrity (from RSA 482-A:2, XI)	Ecological Integrity (from RSA 482-A:2, XI)				
Laucational Potential (from USACE Highway Methodology: Educational/Scientific Value)					
5. FISH & Aquatic Life Habitat (from USACE Highway Methodology: FISH & Shellfish Habitat)					
5. Groundwater Recharge (from USACE Highway Methodolog)	dology: Groundwater Recharge/Discharge)				
 Noteworthiness (from USACE Highway Methodology: 	Noteworthiness (from USACE Highway Methodology: Threatened or Endangered Species Habitat)				
7. Nutrient Trapping/Retention & Transformation (from	Nutrient Trapping/Retention & Transformation (from USACE Highway Methodology: Nutrient Removal)				
8. Production Export (Nutrient) (from USACE Highway N	Production Export (Nutrient) (from USACE Highway Methodology)				
Scenic Quality (from USACE Highway Methodology: Visual Quality/Aesthetics)					
10. Sediment Trapping (from USACE Highway Methodology: Sediment /Toxicant Retention)					
11. Shoreline Anchoring (from USACE Highway Methodology: Sediment/Shoreline Stabilization)					
2. Uniqueness/Heritage (from USACE Highway Methodology)					
3. Wetland-based Recreation (from USACE Highway Methodology: Recreation)					
14. Wetland-dependent Wildlife Habitat (from USACE Highway Methodology: Wildlife Habitat)					
First, determine if a wetland is suitable for a particular function and value ("Suitability" column) and indicate the rationale behind your determination ("Rationale" column). Please use the rationale reference numbers listed in Appendix A of USACE <i>The Highway Methodology Workbook Supplement</i> . Second, indicate which functions and values are principal ("Principal Function/value?" column). As described in <i>The Highway Methodology Workbook Supplement</i> , "functions and values can be principal if they are an important physical component of a wetland ecosystem (function only) and/or are considered of special value to society, from a local, regional, and/or national perspective". "Important Notes" are to include characteristics the evaluator used to determine the principal function and value of the wetland.					

FUNCTIONS/ VALUES	SUITABILITY (Y/N)	RATIONALE (Reference #)	PRINCIPAL FUNCTION/VALUE? (Y/N)	IMPORTANT NOTES
1	🛛 Yes 🔲 No		X Yes	The North River and adjacent wetlands are ecologically important to the area
2	☐ Yes ⊠ No	1, 9	Yes No	Wetland is located close to schools, but safe access and parking are limited
3	🛛 Yes 🔲 No	1, 3, 4, 7, 10, 14, 16, 17	🛛 Yes 🗌 No	North River provides fish habitat
4	🛛 Yes 🔲 No	1, 5, 6, 7, 8, 10, 13, 14	🛛 Yes 🗌 No	Wetland complex provides flood storage for North River
5	📉 Yes 🔲 No	1, 2, 4, 7, 15	☐ Yes ⊠ No	Wetland is associated with a perrenial stream. Gravel/sandy soils located adjacent to wetland.
6	🛛 Yes 🔲 No	1	🔀 Yes 🔲 No	Wetland is known to contain state- listed turtle species
7	📉 Yes 🔲 No	1, 3, 4, 5, 7, 8, 9, 12, 13	🔀 Yes 🔲 No	Wetland retains water and nutrients during flood events
8	📉 Yes 🔲 No	1, 4, 5, 6, 7, 10, 12	🔀 Yes 🔲 No	Wetland and North River provide food and habitat for fish and wildlife
9	🔀 Yes 🔲 No	1, 2, 3, 12	☐ Yes ⊠ No	Wetland is easily viewed from Route 152
10	🛛 Yes 🔲 No	1, 2, 4, 10, 12, 14, 16	🔀 Yes 🔲 No	Wetland likely retains sediment from North River during flood events
11	🛛 Yes 🔲 No	3, 4, 7, 9, 12, 13	🔀 Yes 🔲 No	Emergent vegetation in wetland provides stabilization along edge of North River
12	🛛 Yes 🔲 No	4, 5, 7, 8, 12, 13, 14, 17, 19, 22, 24, 30	🔀 Yes 🔲 No	Wetland provides habitat for endangered species. North River is a NH Designated River (part of Lamprey River Watershed)
13	Yes	2, 6, 8	☐ Yes ⊠ No	North River provides fishing opportunities but access and parking at this location is limited
14	Yes	2, 5, 6, 7, 8, 13, 17	X Yes	Wetland and North River provide wildlife habitat. Surrounding area is mostly undeveloped.

Irm@des.nh.gov or (603) 271-2147

NHDES Wetlands Bureau, 29 Hazen Drive, PO Box 95, Concord, NH 03302-0095

www.des.nh.gov

SECTION 5 - VERNAL POOL SUMMARY (Env-Wt 311.10)

Delineations of vernal pools shall be based on the characteristics listed in the definition of "vernal pool" in Env-Wt 104.44. To assist in the delineation, individuals may use either of the following references:

- *Identifying and Documenting Vernal Pools in New Hampshire 3rd Ed.*, 2016, published by the New Hampshire Fish and Game Department; or
- The USACE *Vernal Pool Assessment* draft guidance dated 9-10-2013 and form dated 9-6-2016, Appendix L of the USACE New England District *Compensatory Mitigation Guidance*.

All vernal pool ID numbers are to be displayed and located on the wetland delineation of the subject property.

"Important Notes" are to include documented reproductive and wildlife values, landscape context, and relationship to other vernal pools/wetlands.

Note: For projects seeking federal approval from the USACE, please attach a completed copy of The USACE "Vernal Pool Assessment" form dated 9-6-2016, Appendix L of the USACE New England District *Compensatory Mitigation Guidance*.

VERNAL POOL ID NUMBER	DATE(S) OBSERVED	PRIMARY INDICATORS PRESENT (LIST)	SECONDARY INDICATORS PRESENT (LIST)		LENGTH OF HYDROPERIOD	IMPORTANT NOTES	
1							
2							
3							
4							
5							
SECTION 6 - STREAM RESOURCES SUMMARY							
DESCRIPTION OF STREAM: lower perrenial STREAM TYPE (ROSGEN): E): E	
HAVE FISHERIES BEEN DOCUMENTED?					DOES THE STREAM SYSTEM APPEAR STABLE?		
OTHER KEY ON-SITE FUNCTIONS OF NOTE:							
The following table can be used to compile data on stream resources. "Important Notes" are to include characteristics the evaluator used to determine principal function and value of each stream. The functions and values reference number are defined in Section 4.							

FUNCTIONS/ VALUES	SUITABILITY (Y/N)	RATIONALE	PRINCIPAL FUNCTION/VALUE? (Y/N)	IMPORTANT NOTES		
1	Yes	Stream resources assessed under Section 4	Yes No			
2	Yes No		Yes No			
3	Yes No		Yes No			
4	Yes No		Yes No			
5	Yes No		Yes No			
6	Yes No		Yes No			
7	Yes No		Yes No			
8	Yes No		Yes No			
9	Yes		Yes No			
10	Yes		Yes No			
11	Yes No		Yes No			
12	Yes No		Yes No			
13	Yes No		Yes No			
14	Yes No		Yes No			
SECTION 7 - ATTACHMENTS (USACE HIGHWAY METHODOLOGY; Env-Wt 311.10)						
Wildlife and vegetation diversity/abundance list.						
Photograph of wetland.						
Wetland delineation plans showing wetlands, vernal pools, and streams in relation to the impact area and						
	For projects in tidal areas only: additional information required by $Env_{-}Wt$ 603 03 /603 04. Please refer to the					
<u>Coastal Area Worksheet (NHDES-W-06-079)</u> for more information.						

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Watershed Map Nottingham 40612 NH Route 152 over North River Nottingham, NH

Stream Crossing Rules (Env-Wt 900) TECHNICAL REPORT

The project involves the replacement of the existing bridge that carries NH Route 152 over the North River (Bridge No. 141/127) in Nottingham. The existing bridge is a reinforced concrete jack-arch structure with a 17-foot clear span and is currently on the State's Red List. Proposed work includes the replacement of the existing bridge with a 30-foot clear span bridge. The bridge will be widened two feet and the project includes 300 feet of roadway widening on each end of the bridge to transition the additional width on each side of the roadway at each bridge approach back to the existing roadway. The bridge will be closed during construction and traffic will be detoured.

Since the project involves the replacement of an existing Tier 3 crossing, this report addresses the applicable stream crossing rules under Env-Wt 904.09.

Env-Wt 904.09 – Repair, Rehabilitation, or Replacement of Tier 3 and Tier 4 Existing Legal Crossings

Env-Wt 904.09(a) – The repair, rehabilitation, or replacement of tier 3 stream crossings shall be limited to existing legal crossings where the tier classification is based only on the size of the contributing watershed.

The NH Route 152/North River bridge is an existing, legal crossing. It is a Tier 3 crossing based on watershed size (6,810 acres). Also, the crossing is within a Designated River Corridor, 100-year floodplain, and an area with records of protected species.

A project shall qualify under this section only if a professional engineer certifies, and provides supporting analyses to show, that:

Env-Wt 904.09(c)(1) – The existing crossing does not have a history of causing or contributing to flooding that damages the crossing or other human infrastructure or protected species.

The existing crossing does not have a history of causing or contributing to flooding that causes damage to surrounding properties, infrastructure, or protected species habitat. Correspondence with the NHDOT District 6 office indicated that there are no recent recorded occurrences of flooding or overtopping at the crossing location.

Env-Wt 904.09(c)(2)(a) – The proposed alternative meets the general design criteria established in Env-Wt 904.01

Env-Wt 904.01 General Design Considerations

- (a) All stream crossings, whether over tidal or non-tidal waters, shall be designed and constructed so as to:
 - 1. Not be a barrier to sediment transport;

The existing 17-foot single-span bridge will be replaced with a 30-foot single span bridge. This is expected to improve sediment transport since the existing undersized bridge likely retains sediment upstream of the crossing. Stone riprap will be placed along the sides of the channel to protect the abutments from scour and construct wildlife crossing shelves, but the natural streambed will be maintained in the center of the channel. In addition, natural streambed material will be placed over the flatter areas of riprap.

2. Not restrict high flows and maintain existing low flows;

The hydraulic analysis completed for the project indicates that the proposed crossing will convey the 100-year storm with over one foot of freeboard. The existing crossing does not convey the 100-year storm.

The proposed bridge will maintain existing low flows. Although the bridge will have a larger hydraulic opening, this is not anticipated to impact low flows given the extensive wetland and tributary system upstream of the project.

3. Not obstruct or otherwise substantially disrupt the movement of aquatic organisms indigenous to the waterbody beyond the actual duration of construction;

The project is expected to improve aquatic organism passage by increasing the existing span at the crossing from 17 feet to 30 feet. The placement of stone riprap is required for scour protection adjacent to the bridge abutments, but the remainder of the channel will be constructed to match the existing natural stream substrate (sand/muck). Natural streambed material will be placed over the flatter areas of riprap. Streambed simulation over the steeper riprap areas is not proposed since the material is unlikely to remain in place.

A 4-foot-wide wildlife shelf will be constructed on one side of the stream channel along the southern bridge abutment to facilitate small animal passage. The wildlife shelf will be at about the same elevation as the ordinary high water line (231.50 feet). It will be constructed with stone/riprap and backfilled with finer material to create a relatively smooth surface.

Temporary disturbance to aquatic organism passage is anticipated during construction since the stream will need to be diverted in order to construct the new bridge. Temporary impacts will be restored and the stream will be returned to its natural channel once construction is complete.

4. Not cause an increase in the frequency of flooding or overtopping of banks;

The project will result in a decrease in the frequency of flooding and overtopping of the banks and roadway due to the larger hydraulic opening. The existing bridge does not convey the 100-year storm. The hydraulic analysis completed for the project indicates that the proposed bridge will accommodate the 100-year design storm with over one foot of freeboard.

5. Maintain or enhance geomorphic compatibility by:

a) Minimizing the potential for inlet obstruction by sediment, wood, or debris; and

b) Preserving the natural alignment of the stream channel;

The project will enhance geomorphic compatibility by lengthening the crossing from 17 feet to 30 feet to span the bankfull width. The existing natural alignment of the stream will be preserved. The segment of the stream channel through the crossing will be reconstructed to match the alignment and elevation of the channel upstream and downstream of the project area.

6. Preserve watercourse connectivity where it currently exists;

The existing watercourse connectivity within the project area will not be altered.

7. Restore watercourse connectivity where:

- a. Connectivity previously was disrupted as a result of human activity(ies); and
- b. Restoration of connectivity will benefit aquatic organisms upstream or downstream of the crossing, or both;

N/A

8. Not cause erosion, aggradation, or scouring upstream or downstream of the crossing; and

The project is anticipated to decrease water velocity at the crossing due to the larger opening of the proposed structure. The following table shows the hydraulic analysis results for the 100-year and 500-year storm events. Stone is proposed near the bridge abutments to protect against scour.

	Existing	Proposed
100-year storm	9.36 ft/s	8.23 ft/s
500-year storm	10.66 ft/s	10.38 ft/s

Average \	Water	Velocity	/ at	Bridge	
-----------	-------	----------	------	--------	--

9. Not cause water quality degradation.

The project is not anticipated to cause any permanent impacts to water quality. Erosion and sediment controls will be used to minimize temporary impacts during construction. The stream will be diverted so that work on the bridge abutments and in the channel will occur in dry conditions. Temporary impact areas will be restored and stabilized prior to returning flow to the stream channel.

Widening of the bridge and roadway will increase the amount of impervious surface (pavement) by approximately 2,375 square feet. Stormwater runoff will sheet flow from the roadway into open drainage ditches, similar to existing conditions. This proposed increase in impervious surface is not expected to be substantial enough to have an impact on water quality in the project area.

Env-Wt 904.09(c)(2)(b) – The proposed stream crossing will maintain or enhance the hydraulic capacity of the stream crossing.

The proposed stream crossing will enhance the hydraulic capacity at the crossing by providing a longer span than the existing bridge. The proposed crossing will accommodate the 100-year storm event with over one foot of freeboard and will also have the capacity to convey the 500-year storm event. The existing crossing does not currently convey the 100-year storm event.

Env-Wt 904.09(c)(2)(c) – The proposed stream crossing will maintain or enhance the capacity of the crossing to accommodate aquatic organism passage.

The project will increase the span at the crossing from 17 feet to 30 feet. This will enhance aquatic organism passage in the project area. A wildlife shelf will be constructed along the southern bridge abutment to allow for small animal passage.

The stream will need to be diverted to construct the new bridge, causing temporary disturbance to aquatic organism passage. The temporary impacts will be restored and the stream will be returned to its natural channel post-construction.

Env-Wt 904.09(c)(2)(d) – The proposed stream crossing will maintain or enhance the connectivity of the stream reaches upstream or downstream of the crossing.

The project will enhance the connectivity of the stream by replacing an undersized bridge with a bridge that spans the bankfull width.

Env-Wt 904.09(c)(2)(e) – The proposed stream crossing will not cause or contribute to the increase in the frequency of flooding or overtopping of the banks upstream or downstream of the crossing.

The hydraulic analysis completed for the project indicates that the proposed bridge will accommodate the 100-year storm event with over one foot of freeboard. The existing bridge does not have adequate capacity to convey the 100-year flood. Since the proposed bridge will improve the hydraulic capacity of the crossing, no increase in the frequency of flooding or overtopping of banks is anticipated.

According to the hydraulic analysis, there will be a minor increase in water surface elevations immediately downstream of NH Route 152 due to the improved opening and reduction in backwater conditions. In consideration of the surrounding floodplain and wetlands, this minor increase will not have an adverse impact on the channel or surrounding properties.

As required by Env-Wt 904.09(c), this report has been certified by a Professional Engineer.

<u>Certified By</u>: Thomas P. Levins, PE

WETLANDS PERMIT APPLICATION STREAM CROSSING WORKSHEET Water Division/Land Resources Management Wetlands Bureau

RSA/Rule RSA 482-A/ Env-Wt-900

This worksheet can be used to accompany Wetlands Permit Applications when proposing stream crossings.

SECTION 1 - TIER CLASSIFICATIONS					
Determine the contributing watershed size at USGS StreamStats.					
Note: Plans for tier 2 and 3 crossings shall be designed and stamped by RSA 310-A to practice in New Hampshire.	y a professional engineer who is licensed under				
Size of contributing watershed at the crossing location: 6,810 acres					
Tier 1 : A tier 1 stream crossing is a crossing located on a watercour than or equal to 200 acres.	se where the contributing watershed size is less				
Tier 2 : A tier 2 stream crossing is a crossing located on a watercour greater than 200 acres and less than 640 acres.	se where the contributing watershed size is				
Tier 3 : A tier 3 stream crossing is a crossing that meets any of the fu	ollowing criteria:				
🖂 On a watercourse where the contributing watershed is r	more than 640 acres.				
Within a <u>designated river corridor</u> unless:					
a. The crossing would be a tier 1 stream based on con	tributing watershed size, or				
 The structure does not create a direct surface wate depicted on the national hydrography dataset as fo 	r connection to the designated river as ound on GRANIT.				
Within a <u>100-year floodplain</u> (see Section 2 below).					
🔀 In a jurisdictional area having any protected species or h	nabitat (<u>NHB DataCheck</u>).				
In a prime wetland or within a duly-established 100-foor pursuant to RSA 482-A:11, IV(b) and Env-Wt 706. Review town prime wetland and prime wetland buffer maps to	t buffer, unless a waiver has been granted w the <u>Wetlands Permit Planning Tool (WPPT)</u> for determine if your project is within these areas.				
Tier 4 : A tier 4 stream crossing is a crossing located on a tidal watercourse.					
SECTION 2 - 100-YEAR FLOODPLAIN					
Use the <u>FEMA Map Service Center</u> to determine if the crossing is located within a 100-year floodplain. Please answer the questions below:					
No : The proposed stream crossing <i>is not</i> within the FEMA 100-year	floodplain.				
Yes: The proposed project <i>is</i> within the FEMA 100-year floodplain. Zone = A					
Elevation of the 100-year floodplain at the inlet: N/A feet (FEMA El. or Modeled El.)					
SECTION 3 - CALCULATING PEAK DISCHARGE					
Existing 100-year peak discharge (Q) calculated in cubic feet per second (CFS): 1,330 CFS	Calculation method: USGS StreamStats				
Estimated bankfull discharge at the crossing location: 381 CFS	Calculation method: Regional Curves				

SECTION 4 - PREDICTED CHANNEL GEOMETRY BASED ON REGIONAL HYDRAULIC CURVES

For **tier 2**, **tier 3** and **tier 4** crossings only.

Bankfull Width: 39.7 feet

Mean Bankfull Depth: 2.4 feet

Bankfull Cross Sectional Area: 95.6 square feet (SF)

SECTION 5 - CROSS SECTIONAL CHANNEL GEOMETRY: MEASUREMENTS OF THE EXISTING STREAM WITHIN A REFERENCE REACH

For tier 2, tier 3 and tier 4 crossings only.

Describe the reference reach location: 900-1,000' upstream of crossing

Reference reach watershed size: 6,810 acres

Parameter	Cross Section 1 Describe bed form	Cross Section 2 Describe bed form	Cross Section 3 Describe bed form	Range
	(e.g. pool, riffle, glide)	(e.g. pool, riffle, glide)	(e.g. pool, riffle, glide)	
Bankfull Width	47 feet	53 feet	51 feet	47-53 feet
Bankfull Cross Sectional Area	SF	SF	SF	SF
Mean <u>Bankfull Depth</u>	~4.5 feet	~4.5 feet	~4.5 feet	~4.5 feet
Width to Depth Ratio	10.4	11.8	11.3	10.4-11.8
Max <u>Bankfull Depth</u>	~6 feet	~6 feet	~6 feet	~6 feet
Flood Prone Width	700 feet	704 feet	773 feet	700-773 feet
Entrenchment Ratio	14.9	13.3	15.2	13.3-15.2

 Table 5-1

 North River – Crossing Location (NH Route 152 Bridge)

	Cross Section 1	Cross Section 2	Cross Section 3	Range	Average
Bankfull Width*	31 feet	30 feet	27 feet	27 – 31 feet	29.3 feet
Mean Bankfull	4.5 feet	4.5 feet	4.5 feet	4.5 feet	4.5 feet
Depth**					
Width to Depth	6.9	6.7	6.0	6.0 - 6.9	6.5
Ratio					
Max Bankfull	6 feet	6 feet	6 feet	6 feet	6 feet
Depth**					
Flood Prone	530 feet	443 feet	460 feet	443 – 530 feet	478 feet
Width*					
Entrenchment	17.1	14.8	17.0	14.8 – 17.1	16.3
Ratio					

*Bankfull width and flood prone width were estimated using LiDAR elevation data in GRANIT, combined with aerial photographs, FEMA floodplain maps, and site observations.

**Mean and maximum bankfull depths were estimated based on site observations.

SECTION 6 - LONGITUDINAL PARAMETERS OF THE REFERENCE REACH AND CROSSING LOCATION

For tier 2, tier 3 and tier 4 crossings only.

Average Channel Slope of the Reference Reach: ~0.002

Average Channel Slope at the Crossing Location: ~0.004

SECTION 7 - PLAN VIEW GEOMETRY

Note: Sinuosity is measured a distance of at least 20 times bankfull width, or 2 meander belt widths.

For tier 2, tier 3 and tier 4 crossings only.

Sinuosity of the Reference Reach: 1.2

Sinuosity of the Crossing Location: 1.2					
SECTION 8 - SUBSTRATE CLASSIFICATION BASED ON FIE	LD OBSERVATIONS				
For tier 2, tier 3 and tier 4 crossings only.					
% of reach that is bedrock:	%				
% of reach that is boulder:	%				
% of reach that is cobble:	%				
% of reach that is gravel:	%				
% of reach that is sand:	100 %				
% of reach that is silt:	%				
SECTION 9 - STREAM TYPE OF REFERENCE REACH					
For tier 2 , tier 3 and tier 4 crossings only.					
Stream Type of Reference Reach:	Туре Е				

Refer to Rosgen Classification Chart (Figure 2) below:

Figure 2: Reference from Applied River Morphology, Rosgen, 1996.

Existing Structure Type: Image Span Pipe arch Open-bottom culvert Image Closed-bottom culvert Image Closed-bottom culvert Image Closed-bottom culvert with stream simulation Image Other:						
Existing Crossing Span: (perpendicular to flow)17 feetCulvert Diameter: Inlet Elevation:feet	feet feet					
Existing Crossing Length: (parallel to flow) 32.7 feet Outlet Elevation: El. feet Culvert Slope: Culvert Slope:	et					
Proposed Structure Type: Tier 1 Tier 2 Tie	er 3 Alternative Design					
Bridge Span	\square					
Pipe Arch						
2 Closed-bottom Culvert						
Open-bottom Culvert						
Closed-bottom Culvert with stream simulation						
Proposed Structure Span: 30 feet Culvert Diameter: fee	et					
(perpendicular to flow) Inlet Elevation: El. fee	feet					
Proposed Structure Length: 34.7 feet Outlet Elevation: El. fee	feet					
(parallel to flow) Culvert Slope:						
Proposed Entrenchment Ratio:* 1.0						
For Tier 2 , Tier 3 and Tier 4 Crossings Only. To accommodate the entrenchment rastructures may be utilized.	For Tier 2, Tier 3 and Tier 4 Crossings Only. To accommodate the entrenchment ratio, floodplain drainage structures may be utilized.					

* Note: Proposed Entrenchment Ratio must meet the minimum ratio for each stream type listed in **Figure 3**, otherwise the applicant must address the Alternative Design criteria listed in Env-Wt 904.10.

Figure 3: Reference from Applied River Morphology, Rosgen, 1996.

SECTION 11 - CROSSING STRUCTURE HYDRAULICS

	Existing	Proposed
100 year flood stage elevation at inlet:	237.02 ft	234.72 ft
Flow velocity at outlet in feet per second (FPS):	9.36	8.23
Calculated 100 year peak discharge (Q) for the propos	1,330	
Calculated 50 year peak discharge (Q) for the propose	1,100	

SECTION 12 - CROSSING STRUCTURE OPENNESS RATIO

For tier 2, tier 3 and tier 4 crossings only.

Crossing Structure Openness Ratio* =

* Openness box culvert = (height x width)/length Openness round culvert = (3.14 x radius²)/length

SECTION 13 - GENERAL DESIGN CONSIDERATIONS

Env-Wt 904.01 requires all stream crossings to be designed and constructed according to the following requirements. Check each box if the project meets these general design considerations.

All stream crossings shall be designed and constructed so as to:

Not be a barrier to sediment transport.

Prevent the restriction of high flows and maintain existing low flows.

Not obstruct or otherwise substantially disrupt the movement of aquatic life indigenous to the waterbody beyond the actual duration of construction.

Not cause an increase in the frequency of flooding or overtopping of banks.

Maintain or enhance geomorphic compatibility by:

- a. Minimizing the potential for inlet obstruction by sediment, wood, or debris, and
- b. Preserving the natural alignment of the stream channel.
- Preserve watercourse connectivity where it currently exists.
- Restore watercourse connectivity where:
 - a. Connectivity previously was disrupted as a result of human activity(ies), and
 - b. Restoration of connectivity will benefit aquatic life upstream or downstream of the crossing, or both.
- Not cause erosion, aggradation, or scouring upstream or downstream of the crossing.
- Not cause water quality degradation.

SECTION 14 - TIER-SPECIFIC DESIGN CRITERIA

Stream crossings must be designed in accordance with the tier specific design criteria listed in Part Env-Wt 904.

The proposed project meets the tier specific design criteria listed in Part Env-Wt 904 and each requirement has been addressed in the plans and as part of the wetland application.

SECTION 15 - ALTERNATIVE DESIGN

NOTE: If the proposed crossing does not meet all of the general design considerations, the tier specific design criteria, or the minimum entrenchment ratio for each given stream type listed in **Figure 3**, then an alternative design plan and associated requirements must be addressed pursuant to Env-Wt 904.10.

I have submitted an alternative design and addressed each requirement listed in Env-Wt 904.10.

Replacement of Bridge No. 141/127 Route 152 (Stage Road) over North River Nottingham, NH State Project No. 40612

Final Hydraulic Design Report

Prepared for:

New Hampshire Department of Transportation 7 Hazen Drive Concord, NH 03302

Prepared by:

GM2 Associates Inc. 197 Loudon Road, Suite 310 Concord, NH 03301 603.856.7854 | gm2inc.com

Date: November 3, 2022 Revised: -

Michelle K. Handfield, PE

Checked by:

Prepared By:

Thomas P. Levins, PE

Table of Contents

1.	Loc	ation Maps	2
2.	Intr	oduction	3
	21	Background	З
	2.1	Existing Conditions	J
	2.2	Proposed Poplacement	
	2.5	EEMA Study	4 1
	2.4	Vertical Datum	4
3	Des	ion Criteria	4
0.	003		
	3.1	Hydraulic Design	4
	3.2	Scour Design	4
4.	Нус	Irology	4
	4.1	Watershed	4
	4.2	Historic Flooding	.5
	4.3	Design Flows	5
5.	Hyd	Iraulic Analysis	5
	51	Methodology	5
	5.1	Medil Goometry	
	5.Z	Hudraulic Darameters	0
	5.5	Existing Conditions	
	5.4	Proposed Bridge (20' Clear Span)	<i>1</i>
	5.5	Stream Crossing Rules Compliant Structure (66' Clear Span)	0
	5.7	Comparison	9
	-		-
6.	Sta	bility & Scour Assessment	10
	6.1	Channel Description	10
	6.2	Scour Analysis Methodology	10
	6.3	Long Term Scour	10
	6.4	Streambed Material	10
	6.5	Contraction Scour	10
	6.6	Local Scour	11
	6.7	NCHRP 24-20 Abutment Scour	11
	6.8	Comparison & Evaluation	11
	6.9	Channel Protection	11
7.	Cor	nclusion	11

Appendix A: Photographs Appendix B: Data Collection Form Appendix C: Hydrologic Analysis Appendix D: Hydraulic Analysis Appendix E: Scour Analysis Appendix F: Channel Protection Appendix G: Plans

1. Location Maps

Figure 1: Location Map: NH 2015 Orthophoto

Figure 2: Location Map: Google Street Map

Figure 3: Location Map: FEMA FIRM

2. Introduction

2.1 Background

Replacement of Bridge 141/127 is required to address deficiencies. The following report documents the efforts and results of the hydrologic, hydraulic, and scour analysis of the existing structure and proposed replacement in accordance with the New Hampshire Department of Transportation (NHDOT) Bridge Design Manual (BDM).

2.2 Existing Conditions

Bridge 141/127 carries Route 152 (Stage Road) over the North River in Nottingham. Constructed in 1925 and rebuilt in 1970, the bridge is a single span structure. The superstructure consists of steel beams with a concrete jack arch deck (original) and steel beams with concrete deck (widened section). Abutments and U-back wingwalls are concrete faced stone masonry walls. The existing bridge has a 17-foot clear span, and out-to-out width of 32.7-feet, and a low chord elevation of ± 235.50 feet. The Rural Major Collector has an AADT = 3,180 (2017) and is a New Hampshire Tier 3 Bridge.

The deck is in poor (4) condition and with an overall structural evaluation rating of serious (3). It is structurally deficient with a Sufficiency Rating of 35% (2019 Inspection). It is currently listed on the NHDOT's Red List.

The bridge currently has an NBIS Item 113 rating = 8 (Scour Critical Status) and an NBIS Item 61 rating = 6 (Channel and Channel Protection). The North River is characterized by sands, cobble, and boulders. Scour is present under the bridge, with footing exposure along both abutments, as documented in underwater inspections. The observed depth of scour has not increased since 2012.

2.3 Proposed Replacement

The proposed structure will convey the river at the same location of the existing bridge. A rigid concrete frame with a 30' clear span will replace the existing steel girders and concrete jack arch deck. The proposed structure will have concrete headwalls and u-back wingwalls. The new structure will raise existing low chords, improving the hydraulic opening and allow for improvements to the roadway profile to minimize the potential for weir flow. The open bottom structure will maintain the native streambed to facilitate the passage of aquatic organisms and conform to the NHDES' stream crossing rules. A wildlife path will also be constructed under the bridge.

2.4 FEMA Study

The bridge is located within FEMA Zone A per FEMA FIRM 33015C0115E. Zone A has no published FEMA base flood elevations and a detailed study of North River has not been performed.

2.5 Vertical Datum

Vertical coordinates in the report reference North American Vertical Datum of 1988 (NAVD88).

3. Design Criteria

3.1 Hydraulic Design

Route 152 is a Tier 3 highway; per NHDOT BDM Table 2.7.5-1 the Design Flood and Check Flood are 100year and 500-year frequencies, respectively. One (1) foot freeboard, as measured from the low chord to the Design Flood upstream water surface elevation, is also required.

3.2 Scour Design

For a 100-year hydraulic design storm, scour analysis criteria include a 200-year storm with a 500-year check storm, in accordance with guidelines established in the FHWA's "Evaluating Scour at Bridges" (HEC-18) 5th Edition, Table 2.3. The 100-year storm was also evaluated.

4. Hydrology

4.1 Watershed

The contributing runoff for this location comes from the upper hills and valleys north and northwest of the bridge. North River flows through the existing structure, and continues southerly, eventually flowing into the Lamprey River. At the bridge, North River is a meandering stream with a low slope and a widened reach that passes through an extensive floodplain and wetland. North River is a NH Designated River and Tier 3 crossing. USGS StreamStats for NH was used to determine a drainage area of 10.64 mi² and a storage area of 0.73 mi².

Figure 4: Watershed Map

4.2 Historic Flooding

Primary flooding issues in the region are a result of snowmelt and rain combined with ice dams (Rockingham County FIS). At Bridge 141/127, a historic flood was recorded in March 1936 when the southern bridge approach was overtopped by ±1.5-feet.

4.3 Design Flows

USGS StreamStats for NH or the Natural Resources Conservation Service (NRCS) (SCS) Unit Hydrograph Method are appropriate methods for determining peak flows for an ungaged site. Based on watershed size and available storage, StreamStats was used for the subject bridge. To consider downstream confluences, flows were also computed in StreamStats for a lower reach of North River with a drainage area = 13.68 mi² and a flow change was included in the hydraulic model. StreamStats does not report a 200-year peak flood; a frequency curve was established to obtain the 200-year storm. Back-up data is provided in Appendix C.

DA	Q2	Q5	Q10	Q25	Q50	Q100	Q200	Q500
10.64	315	520	690	920	1100	1330	1540	1880
13.68	390	630	840	1110	1330	1600	1850	2230

Table 1: Peak Flows

5. Hydraulic Analysis

5.1 Methodology

Water surface profiles were developed for the North River for existing and proposed conditions using HEC-RAS version 6.1.

5.2 Model Geometry

The geometric data used is a combination of current field survey and LIDAR obtained from NOAA; vertical datum for the project is NAVD88.

Figure 5: HEC-RAS Cross Section Location Map

5.3 Hydraulic Parameters

This reach of the North River is meandering stream with a low slope and a widened reach that passes through an extensive floodplain and wetland. The river bed is characterized by sand, cobbles, and boulders. Channel and overbank roughness (Manning's 'n' values) were assigned based on observation. For the overbank, a value of 0.08 was used. For the channel, a value of 0.03 was used.

Figure 6: Typical Channel & Overbank Conditions

For contraction and expansion dynamic head losses, values of 0.1 and 0.3 were used except near the bridge where the flow area changes more suddenly. Values of 0.3 and 0.5 were used in this case. Ineffective areas were added for contraction and expansion. Contraction & expansion ratios at the bridges were added at 1:1 ratio and 1:2 ratios, respectively.

Boundary conditions were identified for a subcritical flow regime; normal depth = 0.002 was used as the downstream boundary based on the channel slope.

5.4 Existing Conditions

The following geometric conditions were modeled under existing conditions:

- 17' Clear span
- Bridge width = 32.7'
- Overtopping relief south of the bridge (low point = 237.00)
- Low chord = 235.50
- Bridge open area = 141.32 ft²

The results are as follows for the Design Flood (1330 CFS):

US 100-YR WSEL	237.02	ft	RS 2265
DS 100-YR WSEL	233.78	ft	RS 2145
Average velocity at bridge	9.36	ft/s	RS 2192 (BR Open Vel)
Minimum Freeboard:	-1.52	ft	LC – US ŴSEL

The results are as follows for the Check Flood (1880 CFS):

US 500-YR WSEL	237.72 ft	RS 2265
DS 500-YR WSEL	234.60 ft	RS 2145
Average velocity at bridge	10.66 ft/s	RS 2192 (BR Open Vel)
Minimum Freeboard:	-2.22 ft	LC – US WSEL

The existing model indicates the existing bridge does not have adequate capacity to convey the Design Flood without exhibiting weir flow and overtopping of the roadway.

5.5 **Proposed Bridge (30' Clear Span)**

The following geometric conditions were modeled under proposed conditions:

- 30' Clear span
- Bridge width = 33'
- Improved roadway profile w/raised low point = 237.30
- Raised low chord = 236.25
- Bridge open area = 241.51 ft²
- 4' wildlife passage shelf along southern abutment

The results are as follows for the Design Flood (1330 CFS):

US 100-YR WSEL	234.72	ft	RS 2265
DS 100-YR WSEL	233.85	ft	RS 2145
Average velocity at bridge	8.23	ft/s	RS 2192 (BR Open Vel)
Minimum Freeboard:	1.53	ft	LC – US WSEL

The results are as follows for the Check Flood (1880 CFS):

US 500-YR WSEL	236.13	ft	RS 2265
DS 500-YR WSEL	234.69	ft	RS 2145
Average velocity at bridge	10.38	ft/s	RS 2192 (BR Open Vel)
Minimum Freeboard:	0.12	ft	LC – US ŴSEL

The proposed bridge provides the capacity to convey both the Design Flood and Check Flood without weir flow. For the Design Flood, at least 1-foot of freeboard is provided. The proposed bridge eliminates pressure flow conditions at Route 152 for both the Design and Check Flood, thus reducing velocities as compared to existing conditions.

There is a minor increase in water surface elevations that occurs immediately downstream of Route 152 due to the improved opening and reduction in backwater conditions. In consideration of the surrounding floodplain and wetlands, this minor increase will not have an adverse impact on the channel or surrounding properties.

5.6 Stream Crossing Rules Compliant Structure (66' Clear Span)

From the University of New Hampshire (UNH) Stream Crossing guidelines, a numeric standard that has been used to determine the appropriate width of the streambed inside the proposed structure is 1.2x the bankfull width plus 2 feet. There is also mention of using 2.2x the bankfull width for Type E streams, which is recommended by NHDES. The existing bank full width surveyed immediately upstream of the bridge is 30 feet. A compliant span length of 66-feet was calculated (2.2x bankfull width).

The following geometric conditions were modeled for the compliant structure:

•	Widened 66' clear span	
•	Improved roadway profile w/raised low point = 237.30	same as 30' span
•	Raised low chord = 236.25	same as 30' span

4' wildlife passage shelf along southern abutment same as 30' span

The results are as follows for the Design Flood (1330 CFS):

US 100-YR WSEL	234.35	ft	RS 2265
DS 100-YR WSEL	233.85	ft	RS 2145
Average velocity at bridge	5.71	ft/s	RS 2192 (BR Open Vel)
Minimum Freeboard:	1.90	ft	LC – US WSEL

The results are as follows for the Check Flood (1880 CFS):

US 500-YR WSEL	235.45	ft	RS 2265
DS 500-YR WSEL	234.69	ft	RS 2145
Average velocity at bridge	6.62	ft/s	RS 2192 (BR Open Vel)
Minimum Freeboard:	0.80	ft	LC – US WSEL

Although this alternative meets the NHDES Stream Crossing Rules, the structure exceeds the needs of the project and has increased wetland impacts. The 30-foot clear span precast concrete rigid frame is proposed for replacement as it meets NHDOT hydraulic requirements, provides for wildlife passage requirements, and minimizes wetland impacts.

5.7 Comparison

HEC-RAS input and outlet results for Existing, Proposed, and the Stream Crossing Rules Compliant Structure are provided in Appendix D. A comparison of the Design Flood water surface profiles, water surface elevations, and velocities for existing and proposed conditions are as follows:

Figure 7: Water Surface Profile Comparison: Design Storm

			WSEL (ft)			Velocity (ft/s)	
RS	Q ₁₀₀	EX	PR	PR vs EX	EX	PR	PR vs EX
2520	1330	237.10	235.09	-2.01	1.80	3.16	1.36
2348	1330	237.06	234.92	-2.14	2.49	4.22	1.73
2265	1330	237.02	234.72	-2.30	2.80	5.05	2.25
2231	1330	237.02	234.73	-2.29	2.52	4.37	1.85
2192							
2145	1330	233.78	233.85	0.07	5.92	5.30	-0.62
2106	1330	233.78	233.80	0.02	5.33	5.28	-0.05
1967	1330	233.90	233.92	0.02	3.26	3.22	-0.04
1840	1330	233.50	233.52	0.02	5.52	5.52	0.00
1545	1600	232.86	232.84	-0.02	6.66	6.76	0.10
1295	1600	232.26	232.26	0.00	7.14	7.14	0.00
1000	1600	231.67	231.67	0.00	7.13	7.13	0.00

Table 2: Design Storm Comparison

6. Stability & Scour Assessment

6.1 Channel Description

The bridge currently has an NBIS Item 113 rating = 8 (Scour Critical Status) and an NBIS Item 61 rating = 6 (Channel and Channel Protection). The North River is characterized by sands, cobble, and boulders. Scour is present under the bridge, with footing exposure along both abutments, as documented in underwater inspections. The observed depth of scour has not increased since 2012.

6.2 Scour Analysis Methodology

In accordance with the BDM and HEC-18 Evaluating Scour at Bridges (FHWA, 5th Ed., April 2012), bridges with a 100-year hydraulic design storm should be evaluated for the 200-year design and 500-year (super flood) event. The 100-year storm was also evaluated. Input data was obtained from the proposed HEC-RAS model discussed above. Velocity distribution tables were evaluated at the main channel approach section RS 2265, bounding section RS 2231, and bridge section RS 2192 BR U to evaluate flow conveyance, critical velocities, and identify input variables. Calculations and annotated output is presented in Appendix E.

6.3 Long Term Scour

Based on observations, inspection reports, and survey data, there is no evidence of significant channel degradation through the subject reach of the North River. There is aggradation at the outlet of the bridge and movement of bed material has exposed the footings, however it is limited to the bridge area suggesting it is the result of localized scour conditions vs. conditions of the overall reach.

6.4 Streambed Material

The bed material consists of sands, cobble, and boulders. Based on sieve analysis, a $D_{50} = 0.18$ mm was used in the analysis to represent the bed material.

6.5 Contraction Scour

Contraction scour occurs from the reduction of flow area as a result of the embankments, bridge encroaching into the floodplain or main channel, change in the downstream control of the water surface elevation or the location of the bridge in relation to a bend. There are two forms of contraction scour; live-bed and clear-water. Equations are presented in HEC-18, Sections 6.2-6.4.

Live-bed scour occurs when bed material in the upstream reach is transported into the bridge section. Clearwater scour occurs when either no bed material is transported from the upstream reach or the material being

transported is mostly in suspension. Based on the size of streambed material, the North River's flow velocities are greater than the bed material's critical velocity and live bed contraction scour governs.

6.6 Local Scour

Local scour at abutments is caused by the acceleration of flow and the development of vortex systems induced by obstructions to the flow. HEC-18 recommends the use of either the HIRE or Froehlich equations. The HIRE equation was developed from data relative to the Mississippi River and is not applicable when the ratio of the projected abutment length to the flow depth is > 25. The HIRE methodology is not applicable at Bridge 141/127. Local scour at the abutments was computed using Froehlich as presented in HEC-18, Section 8.6.1.

6.7 NCHRP 24-20 Abutment Scour

Local scour was also computed using the NCHRP 24-20 methodology outlined in HEC-18. The NCHRP 24-20 approach uses contraction scour as the starting computation, applying a factor for large scale turbulence which occurs in the vicinity of the abutment. Scour depths were computed using equations presented in HEC-18, Section 8.6.3 for live-bed contraction scour with vertical-walls.

6.8 Comparison & Evaluation

A summary of scour depths computed using HEC-18 methods is provided in the following table.

Event	Contraction	Froehlich's		Total Co	NCHRP	
	Live Left Right		Left	Left Right		
	ft	ft	ft	ft	ft	ft
Incipient	2.39	3.66	9.91	6.04	12.29	7.50
200 Year	2.98	4.47	10.83	7.46	13.81	8.76
500 Year	3.99	5.70	12.21	9.69	16.20	10.67

Table 3: Scour Depth Comparison

Froehlich's equations estimate upper limit depths and the resultant total component scour depths are overly conservative for field conditions and the documented scour history. Values computed using the NCHRP 24-20 method are recommended for design.

For proposed conditions, it is recommended to maintain the NBIS Item 113 rating = 8 (Scour Critical Status) and NBIS Item 61 rating = 6 (Channel and Channel Protection).

6.9 Channel Protection

To protect against future scour damage along the new abutments, riprap protection in accordance with HEC-23 is proposed. Computations are provided in Appendix F.

7. Conclusion

The proposed 30-foot span bridge is adequate to convey the Design flood (Q100) yielding greater than one foot of freeboard during the Design flood and adequate conveyance during the Check Flood (Q500). Footings will be designed to withstand 200-year computed scour depths = 8.76-feet. There is a minor increase in water surface elevations that occurs immediately downstream of Route 152 due to the improved opening and reduction in backwater conditions. In consideration of the surrounding floodplain and wetlands, this minor increase will not have an adverse impact on the channel or surrounding properties.

The project will also incorporate riprap along the abutments to provide scour protection.

APPENDIX A: Photographs

NH Route 152: On Bridge Looking North

NH Route 152: On South Approach Looking North

NH Route 152: North Approach Looking North

NH Route 152: North Approach Looking South

NH Route 152: On Bridge Looking Upstream

Bridge: East Fascia

Bridge: West Fascia

Bridge: West Fascia and South Abutment

Bridge: Z-pile and H-pile holes at NE corner

Bridge: H-pile hole at SE corner

APPENDIX B: Data Collection Form

DATA COLLECTION AND FIELD REVIEW

I. <u>GENERAL PROJECT DATA</u>

N

	Bridge No.: <u>141/127</u> Town: <u>Nottingham</u> Feature carried: <u>Route 152 (Stage Road)</u>	Project No: 40612 Feature crossed: North River
	Functional class: Tier 1, 2 or 3	
	Tier 4 or 5	
	Year built: 1925 Overall NBIS structure rating: <u>3</u> USGS total scour index: -	Year Rebuilt: <u>1970</u> NBIS Item 113: <u>8</u> Sufficiency rating: <u>45</u>
	Plans available? Q yes	o no
II.	SUPERSTRUCTURE INFORMATION Bridge width: 32.7 (ft) Number of spans: 1	Bridge length: 23.0 (ft) Bridge skew: 0 (degrees)
III.	HYDROLOGIC AND HYDRAULIC INFORMATIC	<u>NC</u>
	Watershed area: 10.64 (sq. mi.) (if ava	ailable from existing plans or report)
	Is it tidally influenced?	o no
	What information is available?hydrafloodway analysis reportSCELFEMA F.I.S.Other	ulic report scour report analysis comparative report

Existing Bridge	e Hydraulic	Information	<i>(if available)</i> :
-----------------	-------------	-------------	-------------------------

	Source	2 Yr.	10 Yr.	50 Yr.	100 Yr.	500 Yr.
		Event	Event	Event	Event	Event
Flow rates (cfs)	Streamstats	315	690	1100	1330	1880
	Streamstats	390	840	1330	1600	2230
Precipitation (in)	NOAA	3.22	5.14	7.22	8.18	11.3
Tidal elevations (ft)						

Elevations (ft.)							
At Structure			Wate	Water Surface at Approach Cross Section RS 2265			
Streambed	Low	Roadway	2 Yr.	10 Yr.	50 Yr.	100 Yr.	500 Yr.
	Chord		Event	Event	Event	Event	Event
226.07	235.5	237.0	230.94	233.29	236.44	237.02	237.72

Pressure flow at design storm?

✓ yes

underclearance (ft.)

Comments: Existing bridge overtops during 100-year Design Flood

IV. SITE DATA

A. Existing structure(s) – Provide sketch of culvert/structure with dimensions and brief description.

Bridge 141/127 carries Route 152 (Stage Road) over the North River in Nottingham. Constructed in 1925 and rebuilt in 1970, the bridge is single span structure. The superstructure consists of steel beams with a concrete jack arch deck (original) and steel beams with concrete deck (widened section). Abutments and U-back wingwalls are concrete faced stone masonry walls. The existing bridge has a 17-foot clear span, and out-to-out width of 32.7-feet, and a low chord elevation of ±235.50 feet.

See Appendix G

Comments: Include structure or culvert type and condition. Note particularly any scour adjacent to abutments or at culvert outlet and the presence of debris or sediment. Also note the location of any utilities in the area of the crossing.

The deck is in poor (4) condition and with an overall structural evaluation rating of serious (3). It is structurally deficient with a Sufficiency Rating of 35% (2019 Inspection). It is currently listed on the NHDOT's Red List. Scour is present under the bridge, with footing exposure along both abutments.

B. High water marks – Describe the nature and location of any apparent high water marks and relate to a date of occurrence, if possible.

The southern bridge approach overtopped in March 1936 by 1.5-feet as recorded in the bridge file.

C. Maximum allowable headwater – Describe the nature of the apparent controlling feature and note its location.

Roadway LP south of bridge = 237.0 (Existing) and 237.3 (Proposed)

D. Fish passage requirements – Comment on the apparent need for fish passage or impediments to same; such as dams or restrictive crossings in the area.

No apparent impediments

V. <u>PERIPHERAL SITE DATA</u>

A. Hydraulic control – Note location and description.

Roadway LP south of bridge

B. Upstream and downstream structures – Provide sketches and brief descriptions of existing bridges/culverts. Include dimensions.

Comments: None.

C. Watershed area – Check watershed boundaries for accuracy. Note current land uses within watershed.

DA = 10.64 sq.mi. Primarily wooded, with clustered development along main roads.

D. Flow control structures within watershed – Note the location and type of all significant flow control structures (dams, etc.) within the watershed. Provide sketches with dimensions as required.

None.

VI. STREAM CHANNEL AND RELATED ASPECTS

A. Stream characterization (completed with Environmental Project Manager)

		Identifier	Drainage Area	Streambed Slope	Streambed Soils	Land Use	
		А	Large	Low	SD	S/F	
		В	Large	Low	SD	Urban	
		С	Large	Moderate	SD	Forested	
		D	Medium	Moderate	SD	Urban	
		Е	Medium	Moderate	SD	S/F	
		F	Medium	Moderate	CLAY	S/F	
		G	Medium	Moderate	TILL	S/F	
		Н	Medium	Moderate	SD	Forested	
	\square	Ι	Medium	Moderate	TILL	Forested	
		J	Small	Low	SD	Urban	
		K	Small	Moderate	TILL	Urban	
		L	Small	Low	SD	S/F	
		М	Small	Moderate	SD	S/F	
		N	Small	Moderate	SD	Forested	
		0	Small	Low	CLAY	S/F	
		Р	Small	Steep	TILL	S/F	
		Q	Small	Moderate	TILL	S/F	
		R	Small	Low	TILL	S/F	
		S	Small	Moderate	TILL	Forested	
		Т	Small	Steep	TILL	Forested	
	Drainage areaSmall Medium Large $\leq 25 \text{ mi}^2$ and $\leq 100 \text{ mi}^2$ Streambed slopeLow Moderate Steep $\geq 25 \text{ ft/mi}$ $\geq 100 \text{ ft/mi}$						
	Streambed soilsSD = StratifieLand UseS/F = Suburba			ed Drift an or Farming			
В.	Channe Previou	Channel stability Previous NBIS Item 61 rating: <u>6</u>					
	Lateral	stability:	✓ stable		Unstable		
	Bank er	rosion:					
	none I light fluvial erosion heavy fluvial erosion mass wasting						

Twenty Groupings	of Stream	Characteristics	(check box)
I wonty Oroupings	of Suburn	Characteristics	CHICCK DOA

endix 2.7-A3		Data Collection	Data Collection and Field Review Form		
Streambed:	stable	aggradating	degrading		
Armoring potenti	al: none	low	moderate in hi		
Geom	orphic factors that affect	stream stability (circle factors	that apply)		
STREAM SIZE	Small (< 30 m wide)	Medium (30-150 m)	Wide (> 150 m)		
FLOW HABIT	Ephemeral (Intern	nuttent) Perennial but flashy	Perennial		
BED MATERIAL	Silt-clay Silt	Sand Gravel	Cobble or boulder		
VALLEY SETTING	No valley: alluvial fan	Low relief valley (< 30 m deep) Moderate reli (30-300 m	ief High relief) (> 300 m)		
FLOOD PLAINS	Little or some (<2X channel width)	Narrow (2-10 channel width)	Wide DX channel width		
NATURAL LEVEES	Little or None	Mainiy on Concerve Well Devel	oped on Both Banks		
APPARENT	Not lacked				
CHANNEL BOUNDARIES	Allunal	Semu-alluvial	Non-allunal		
TREE COVER ON BANKS	<50 percent of bankline	50-90 percent	>90 percent		
SINUOSITY	Straight Sinuosity I-1.05)	Sinuous (1.06-1.25) Meandering (25-2.0)	Highly meandering (>2)		
BRAIDED	Not braided (<5 percent)	Locally braided	Generally braided (>35 percent)		
ANABRANCHED STREAMS	Not anabranched (<s percent)<="" td=""><td>Locally anabranched Gener (5-35 percent)</td><td>ally anabranched > 35 percent)</td></s>	Locally anabranched Gener (5-35 percent)	ally anabranched > 35 percent)		
VARIABILITY OF WIDTH AND DEVELOPMENT OF BARS	Required the Requi	Wider at bends Wider at bends	Random vanation		

Source: Adapted From Brice and Blodgett, 1978

(See also FHWA HEC-20, "Stream Stability at Highway Structures" for discussion of the above factors
Bar	nk protection									
	Type none modified intermediate standard concrete other									
	Condition \checkmark n/agoodweatheredslumpedpoormissingfair									
	Comment on the need (if any) for training walls, cutoff walls or special slope or channel protection.									
		_								
C.	Channel and overbank roughness coefficients	_								
	Basic channel description: Image: channel in earth in earth in channel cut into rock in channel fine gravel Image: channel cut into rock in channel coarse gravel									
	 Surface irregularity of channel: smooth – best obtainable section for materials involved minor – slightly eroded or scoured side slopes moderate – moderately sloughed or eroded side slopes. severe – badly sloughed banks of natural channels or badly eroded sides of man-made channels - jagged and irregular sides or bottom sections of channels in rock. 									
	 Variations in shape and size of cross sections ✓ changes in size or shape occurring gradually □ large and small sections alternating occasionally or shape changes causing occasional shifting of main flow from side to side. □ large and small sections alternating frequently or shape changes causing frequent shifting of main flow from side to side. 									
	Channel obstructions – Judge the relative effect of obstructions – consider the degree of reduction in the average cross sectional area, the character of obstructions, and the location and spacing constructions.	n of								
	<u>NOTE</u> : Smooth or rounded objects create less turbulence than sharp, angular objects.									
	The effect of obstructions is:									
	appreciable severe									

Degree of vegetation - note amount and character of foliage.

The effect of vegetative growth upon flow conditions is:

LOW - Dense growths of flexible turf grasses where average depth of flow is 2 to 3 times the height of vegetation. Supple seedling tree switches where the average depth of flow is 3 to 4 times the height of the vegetation.

MEDIUM - Turf grasses where the average depth of flow is 1 to 2 times the height of vegetation. Stemmy grasses, weeds, or tree seedlings, (moderate cover), with average depth of flow 2 to 3 times the height of vegetation. Bushy growths (moderately dense) along channel side slopes with no significant vegetation along channel bottom.

HIGH - Turf grasses where average height is about equal to the average depth of flow. Willow of Cottonwood trees 8 to 10 years old with some weeds or brush. Bushy growths about 1 year old. No significant vegetation along channel bottom.

VERY HIGH - Turf grasses where the average depth of flow is less than one half the height of vegetation. Bushy growths about 1 year old intergrown with weeds. Dense growth of cattails along channel bottom. Trees intergrown with weeds and brush (thick growth).

Additional comments:

VII. HYDRAULIC VULNERABILITY

Is there confluence present?	$oldsymbol{O}$	yes		\bigcirc	no
Angle of attack (flood flow):	O	yes		$oldsymbol{O}$	no
Bends in channel:		upstre straig	am of bridge ht channel reach	Y Y	downstream of bridge at bridge
Trapping potential:	V	low	medium	Ľ	high
Debris potential:	~	low	moderate	Γ	high
Overtopping relief:	none on brid	ge	left approach relief bridge	E	right approach cannot be determined

Primary bed material:	sand silt/clay	gravel cobble		oulders edrock	manmade
Comments:					
. <u>VISUAL SCOUR EVID</u>	DENCE				
USGS observed scour inde	ex:				
History of scour problem:	• yes		O n	0	
underwater inspections. Th	e observed depth of sco	our has not incr			
underwater inspections. The Note: Comment should address the s	ddress any evidence of s	scour at ALL	substructure uni	its.	
underwater inspections. The Note: Comment should address of the should add	ddress any evidence of a	scour at ALL	substructure uni	its.	
underwater inspections. The	ddress any evidence of a contraction sco	scour at ALL	substructure uni	its.	
underwater inspections. The Note: Comment should ad Channel width upstream: 3 Channel width under bridg Channel width ratio (channel wid	ddress any evidence of s <u>CONTRACTION SCO</u> <u>31</u> (ft.) ge: <u>30</u> (ff.)	scour at ALL OUR SUSCE	substructure uni		
underwater inspections. The Note: Comment should ad Channel width upstream: Channel width under bridg Channel width ratio (channel overbank flow:	ddress any evidence of a <u>CONTRACTION SCO</u> <u>31</u> (ft.) ge: <u>30</u> (ff nel width upstream / ch ves	scour at ALL OUR SUSCE	substructure uni <u>PTIBILITY</u> nder the bridge:		
underwater inspections. The	ac observed depth of sco ddress any evidence of s <u>CONTRACTION SCO</u> 31 (ft.) ge: 30 (ft.) mel width upstream / ch \bigodot yes annel of the approach s %-90% 50%-7	Section: 75%	substructure uni <u>PTIBILITY</u> nder the bridge: nder 25%-50%	<u>1:1</u> o	<25%
underwater inspections. The	ae observed depth of sco address any evidence of state CONTRACTION SCO 31 (ft.) ge: 30 (ft.) ge: 30 (ft.) ge: 30 (ft.) (ft.) (ft.) ge: 30 (ft.) (ft.)	scour at ALL <u>OUR SUSCE</u> t.) annel width u section: 75%	substructure uni PTIBILITY nder the bridge: n 25%-50% aken for sieve ar aken for sieve ar	its. <u>1:1</u> o	<25%
underwater inspections. The	ae observed depth of sco address any evidence of state <u>CONTRACTION SCO</u> 31 (ft.) ge: 30 (ft.) ge: 30 (ft.) ge: 30 (ft.) ge: 30 (ft.) (ft.) (ft.) ge: 30 (ft.) (ft.) (ft.) (ft.) </td <td>scour at ALL <u>OUR SUSCE</u> t.) annel width u section: 75% [sample t sample t low</td> <td>substructure uni <u>PTIBILITY</u> nder the bridge: n 25%-50% aken for sieve ar aken for sieve ar medium</td> <td>its. <u>1:1</u> o</td> <td><25%</td>	scour at ALL <u>OUR SUSCE</u> t.) annel width u section: 75% [sample t sample t low	substructure uni <u>PTIBILITY</u> nder the bridge: n 25%-50% aken for sieve ar aken for sieve ar medium	its. <u>1:1</u> o	<25%

Which abutmant is warsa?		Г] right
which abutment is worse?.	leit	L	Ingin
Observed scour depth: To footing	(ft) Remaining embe	edment in river bed:_	Unknown (ft)
Abutment protection:			
Гуре: <u>None</u>			
Condition: good fair	weathered poor	slumped N/A	missing
Abutment exposure due to scour: none no undermining se	exposure f ettlement f	ooting exposed ailed	piles
Commenter			
IER SUSCEPTIBILITY (EXIST	ING BRIDGE) (if applic	able):	
IER SUSCEPTIBILITY (EXIST Worst pier number:	ING BRIDGE) (if applic	able):	
IER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth:	ING BRIDGE) (if applic	edment in river bed:	(ft)
IER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth: Pier exposure due to scour:	ING BRIDGE) (if applic	edment in river bed:	(ft)
IER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth: Pier exposure due to scour: <u>Pier protection</u> :	ING BRIDGE) (if applic	edment in river bed:	(ft)
IER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth: Observed scour depth: Pier exposure due to scour: Pier protection: Type: modified concrete	ING BRIDGE) (if applic (ft.) Remaining emb none piles exposed intermediate other	edment in river bed: no exposure undermining standard absent	(ft)footing exposed settlementslope paving none
IER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth: Observed scour depth: Pier exposure due to scour: Pier protection: Type: modified concrete Condition: good fair	ING BRIDGE) (if applic (ft.) Remaining emb none piles exposed intermediate other weathered poor	edment in river bed: edment in river bed: no exposure undermining standard absent slumped N\A	(ft)footing exposed settlementslope paving nonenonemissing
IER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth: Diserved scour depth: Pier exposure due to scour: Pier protection: Type: modified concrete Condition: good fair	ING BRIDGE) (if applic (ft.) Remaining emb none piles exposed intermediate other weathered poor	edment in river bed: edment in river bed: no exposure undermining standard absent slumped N\A	(ft)
PIER SUSCEPTIBILITY (EXIST Worst pier number: Observed scour depth: Observed scour depth: Pier exposure due to scour: Pier protection: Type: modified concrete Condition: good fair Comments:	ING BRIDGE) (if applic (ft.) Remaining emb none piles exposed intermediate other weathered poor	edment in river bed: edment in river bed: no exposure undermining standard absent slumped N\A	(ft

APPENDIX C: Hydrologic Analysis

Historic Flooding Documentation StreamStats Computations Flow Frequency Curve Rainfall Data

Line Moltingham No. 141/127 Encode North River Part South 197/2 Line Molecular Construction Construction Part South 197/2 Line Accommentation Construction Construction Part South 197/2 Line Accommentation Construction Part South 197/2 Part South 197/2 Line Accommentation South 197/2 Construction Part South 197/2 Part South 197/2 Part South 197/2 South 197/2 Part 197/2 Part 197/2 Part 197/2 Part 197/2 Part 197/2 South 197/2 South 197/2 Part 197/2 Part 197/2 Part 197/2 Part 197/2 South 197/2 South 197/2 Part 197/2 Part 197/2	5/7/41	5	TATE HIGHWAY	dept. Di NH	NG.	STEEL S	SPANS	1	MADE V	VH	P		CARD	1	OF Z	
<pre>Inter All Interim Second I. Sec</pre>	DATE Notti	ahamin	. 141/1	24		PRIDCE	OVER T	Vort	6 D	ino	1000	_	SPAN		Tar	10
Do ministrations All increased I born strayers with rearray before thermal STG 45.0° with the second in A logic provides and the second in the second strayers and the sec	RATING H-15	y	REQUIRED LOAD POSTED LIVE					YEAR BUILT 1925				5.				
Internation Construction Construction </td <td>NO AND TYPE SPANS</td> <td>Allincas</td> <td>ed Th</td> <td>n st</td> <td>ions</td> <td>with</td> <td>cope</td> <td>inc</td> <td>kan</td> <td>hoe</td> <td>TOTAL LEN</td> <td>стн 2</td> <td>3-0</td> <td>" ,</td> <td></td> <td></td>	NO AND TYPE SPANS	Allincas	ed Th	n st	ions	with	cope	inc	kan	hoe	TOTAL LEN	стн 2	3-0	" ,		
СЕРЕВАL АЛЛИМАТ БАЛК ВОГ ВЕЛИКЕ ВИЛИ ЦИСТИ ОСТИНАТИИ ВИЛИ ЦИСТИ ОСТИНАТИИ ВИЛИ ЦИСТИ ОСТИНАТИИ	SKEW	SU	PERELEVATION	11 211	912	CROWN /*	in 10-0	A	PPROACH	PAVEN	MENT .57	G	16'.			
THEORY For A second HTTP: DOD'* CONSTRUCT THE TWO IN THE STATE AND	GENERAL	ALIGNM	IENT	GRADE	SIGHT	DISTANCE	SP	AN LENGT	н	1 -	WIDTH	28-	211	CLEAR	ANCE	
Financestrone ** 4/7.: 0.0074* 0.00000 0.00000 0.00000 Minutestrone ** level ** 0.00000 1700 0.00000 1000 Minutestrone state town Millood multip 1700 0.00000 1000 Minutestrone state town Millood multip 1700 0.00000 1000 Matterstrone state state town Millood multip 1000 1.000 1.000 Matterstrone state state state town 1.000 1.0	BRIDGE	tan	(a. 1				C. C. BEA	RINGS		BETW	EEN CURBS	2+0	×	ROAD- WAY	RAIL- ROAD	HIGH
Million Darmon "//eref "//eref "//eref "//eref "//eref The Class of Million Juncan page 1/2 PSSINED STR Vertex 100 Test Willion Million Willion Willion <td>SETAR APPROACH</td> <td>11</td> <td></td> <td>+17.</td> <td>50</td> <td>00'+</td> <td>0. 0. FL0</td> <td>OR</td> <td>23-0</td> <td>BETW</td> <td>EEN RAILS</td> <td></td> <td>HORI-</td> <td>21-2</td> <td></td> <td></td>	SETAR APPROACH	11		+17.	50	00'+	0. 0. FL0	OR	23-0	BETW	EEN RAILS		HORI-	21-2		
DESCRIPTION MILLION OF A CONTROL OF A CONTRO	NEW AND APPROACH	11		level		11	CLEAR SE	PAN	17-0	WALK	s		VERTICAL	oper	,	1.0.
NUMBER 2011 STATE NOME NUMBER 2011 NUMBER	DESIGNED BY HIGH	WAY DEPT	CONS. ENG.					BUILT	BYN	HH	D					
PROFERENCE AND FORCE OCCL TOTAL CONT # 2989, 15 TRAVES SERVER DATA A DECEMPTION TO BERGE TRAVES SERVER DATA A CONTRACTOR DO BERGE TRAVES SERVER DATA A A CONTRACTOR DATA A TOTAL CONTRACTOR DATA A A CONTRACTOR DATA A TOTAL CONTRACTOR DATA TOTAL CO	MAINTAINED BY 57	ATE TOWN	RAILROA	D				PLAN	S ON I	FILE 2	5NOT ON	FILE	TO	LL OR FR	EE	
Total Cost # 2989.15 TRAFTE SURVEY COST A B C OF A H I TRAFTE SURVEY COST A B C FLOOR SUBJECT STATUS AND AND THE FLOOR OF THE A COST AND AND AND THE STATUS AND AND THE STATUS AND AND THE STATUS AND AND AND THE STATUS AND	PROJECT NO. SA	B 1925	CONTRA	CTOR F	orce	acct										
Therefore survey Data A B C D F G H 1 WATERWAY, LEVATOR UNDER WATERWAY, LEVATOR UNDER WATERWAY, LEVATOR UNDER THE MUNICIPAL STREAM DATA AND CARACTER CHARGE THE CARACTER CHARGE D.A. 6750 acres. Wooded slopes + North R. Dond. Fin Gr. to str. bed=10' av. Cl. Woter H = 80 av. Woter 3'b av. deep finter SUBSTRUCTURE CHARGE SUBSTRUCTURE ATENAL TYPE READ OF A CL. Woter H = 80 av. Woter 3'b av. deep finter SUBSTRUCTURE ATENAL TYPE READ OF A CL. Woter H = 80 av. Woter 3'b av. deep finter SUBSTRUCTURE ATENAL TYPE READ OF A CL. Woter H = 80 av. Woter 3'b av. deep finter SUBSTRUCTURE ATENAL TYPE READ OF A CL. Woter A B = 80 av. Woter 3'b av. deep finter SUBSTRUCTURE ATENAL TYPE ACCOUNT AND A CLASS AND A C	TOTAL COST # 2	989.15				STE	EL COST			FL	OOR SLAB CO	ost				1.1
NATE WALK TERMING LOB BRIDGE NUMBER VIEW Full 1936 NATE BRIDGE OFFINE 12.5 4" ± NUMBER VIEW Full 1936 NATE BRIDGE OFFINE 12.5 4" ± NUMBER VIEW FULL STATES NOTE STATES NOTE STATES NOTE STATES NOTE STATES NUMBER VIEW NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES	TRAFFIC SURVEY DAT	A A	в		с	D		F		G		н		1 ¹		
ALSAMENT ADD CLASSETE GRANNEL D.A. 6750 acres. Wooded slopes r North R. Pand. Fin Gr. to str. bad = 10 ⁻¹ ar. 'Cl. Woter Ht = 8 ⁻⁰ ar.' Water 3 ⁻⁶ ar. deep *1/14 ⁻¹ BUBSTRUCTURE ANTRAL BUBSTRUCTURE ANTRAL Winds Dature and	WATERWAY. EL	EVATION LOW BRID	GE	8	ELEVATION HIGH WATE	MAXIMUM	ull .	1936		ARE	A BRIDGE OP	ENING	125	4' ±	1	
Fin Gr. to str. bed=10', ov. Cl. Water Ht= 8'0 ov. Water 3'b av. deep 5/2/4's REARS 1936 Hood I's over south on a conc. REAR TYPE HUMAN THE ALL TYPE HUMAN THE ALL TYPE HUMAN THE HUMAN TH	ALIGNMENT AND CHA	RACTER CHANNEL			D.A.	6,750	ocre	s. h	1000	led	slope	5 7.	Nort	HR.	Por	nd
Substructure Sub	Fin Gi	to str. b	ed=10-	l'av.	· C/.	Wate	r Ht.	= 8-0	av!	k	Vater .	3-6	av. a	leep	5/7/	141
SUBSTRUCTURE MATERIAL TYPE NO. 1822 LENATH CONSTRUCTURE No. 1822 LENATH TERATABUTTERT OLD CONSTRUCTURE CONSTRUCTURE CONSTRUCTURE CONSTRUCTURE CONSTRUCTURE CONSTRUCTURE No. 1822 LENATH CONSTRUCTURE CONSTRUCTURE CONSTRUCTURE STATUTE INCOSECT To CONSTRUCT Statut Statute construct STATUTE INCOSECT To CONSTRUCTURE Statute construct STATUTE INCOSECT To CONSTRUCTURE Statute construct Statut Statut Statut Statut Statut STATUTE INCOSECT TO CONSTRUCTURE Statute construct Statut Statut Statut Statut Statute construct Statut Construct Statut Statute construct Statut Construct Statut Construct Statut Statute Construct Statut Constatut Construct Statut Construct Statut Const	REMARKS 1936	Flood 1-6	t over	sout	hor	proad	h.									
REFER AUTINENT Old Stane rein cone faced Soft More and authent """"""""""""""""""""""""""""""""""""	SUBSTRUCTUR	E MATERIAL	TYPE	НЕ	EIGHT	SUPPORTING MATERIAL	PI	LES-TYP	É	NO.	SIZE	LENG	ятн		CAPS	
Stress As A BUTRENT """"""""""""""""""""""""""""""""""""	REAR ABUTMENT O	ld stone re.	in conc.	faced	· .	soft	1.				1					
M ^M (FES OB BERTS MIRES Some as abuts. parallel type. Old obuts x wings set on lag cribbing. REMARKS Condition REMARKS Condition SUPERSTRUCTURE MATERIA Struct Steel + Conc. SPARTUP incosed I bm. strgrs * CRADETO BROES SAT 2-1 REMARKS Concerner - Conce Conce Wood MATERIAL Gravel Conce Conce Wood MATERIAL Gravel Conce Conce Wood Stiding type HATERIAL Gravel Conce Conce Wood Stiding type REMARKS General condition VERY acc. 9/8 th hock rods @ 10:0° c.c. * Repaired & widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L Nothingham PH/RZT N/52 HE A BARTON CONSTRUCTION OF CONSTRUCTION O	SE FORWARD ABUTMENT	"			£	11									_	_
WHESS Some as abuts. parallel type. Old obuts x wings set on log cribbing. REMARKS Condition Particle yourget Builder M. AP. 3: 28 (B.A. 37) SEC 7380-14 SUPERSTRUCTURE. WATCHAL Struct Steel + Conc. SPARTYPE incosed I bm. striges * GRADE TO LOW STEEL GRADE TO LOW STEEL DEPTR PARTUS COURSE TROOM Struct Steel + Conc. WEARING COURSE TROOM Struct Steel + Conc. SPARTYPE incosed I bm. striges * GRADE TO LOW STEEL DEPTR DEPTR PARTUS AT WEARING COURSE TROOM CONSTRUCTION CON	PIERS OR BENTS						_				L			-		
REWARKS Condition very good Defining very good SUPERSTRUCTURE MATERIAL Struct Steel + Conc. SPAN TYPE incased I bin. strops * GRADE TO BRIDGE SEAT 2-1": SUPERSTRUCTURE MATERIAL Struct Steel + Conc. SPAN TYPE incased I bin. strops * GRADE TO BRIDGE SEAT 2-1": MATERIAL GOOR CONS CONSTRUCT Steel + Conc. SPAN TYPE incased I bin. strops * WARRING COURSE FLOOR CONS CONSTRUCT Strops * SUPERSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT Strops * SUPERSTRUCT OF STRONG CONSTRUCT CONSTRUCT Strops * SUPERSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT Strops * SUPERSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT Strops * SUPERSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT STRONG CONSTRUCT STRONG CONSTRUCT STRONG CONSTRUCT STRONG CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT STRONG CONST	WINGS Same	as abuts	. para	11e1 1	ype	.' Ol	d abu	its +	wir.	195	set of	n le	ng ci	ribk	ning	7:
Bulliada HAT. APR. 31: 23 FEB. 8: 27 DEC.7386-14 SUPERSTRUCTURE. MATCRIAL Struct Steel + Conc. SPAN TYPE incased I for. strops * GRADE TO DRIVE ELL DEPTH PART TO DRIVE INCASE IN TO DRIVE INCASE IN TO DRIVE INCASE INC. DEPTH MARELS AT PLANT TO DRIVELE MARELS AT PLANT TO DRIVELE MARELS AT PLANT TO DRIVEL MARELS AT PLANT TO DRIVEL MARELS AT PLANT TO DRIVE TO DRIVEL MARELS AT PLANT TO DRIVE TO DRIVE TO DRIVEL MARELS AT PLANT TO DRIVE THE BALL GRAVE AND TO DRIVE TO DRI	REMARKS Conc	lition ve	My QO	od .									Y		~	
Outling for the set of			1.1		_					_		_	_	_		
Decrementation of the set of the s								<u></u>	_					_		
SUPERSTRUCTURE. MATERIAL Struct Steel + Conc. SPAN TYPE incased 1 bm. strgrs * GRADE TO LOW STEEL DEFT DEFT MATERIAL Struct Steel + Conc. MARTERIAL 2.1 " TYPE INCORE CURRE FLOOR MATERIAL OF AT IN 0.0 MATERIAL MATERIAL <td< td=""><td></td><td>Postindex PAT. APR. 3</td><td>'23 FEB,8,'27</td><td>96-C-73</td><td>96-14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>in</td><td></td></td<>		Postindex PAT. APR. 3	'23 FEB,8,'27	96-C-73	96-14										in	
SJOPERSTRUCTURE WITCH STEPLARS STORE STEPLARS CONSTRUCT STEPLARS CONSTRUCT STEPLARS TO STEPLARS TO STEPLARS STATUS TO STEPLARS STATUS TO STEPLARS STATUS TO STEPLARS STATUS STATUS TO STAT	CUREDSTRUCT		ct.	C.F.	-1 -1	Carro		CDAN	TYPE			1	-+-		-	
OWNOR 10 BRIDGE M. W. from Nottingham-Lee T. L. State of the transmitter State of the transmitter	SUPERSTRUCT	URE. MATERIAL	STRUCT	Died	2/ 4	CONC.	W STEEL	SPAN	TIPE /	aca	580 1	om.	3//0	grs	-T	
WEARING COURSE PLOOR CURPS ROAD RAIL WALK RAIL DEAR IND & B MATERIAL Gravel Conc Conc Wood Station FIXED MATERIAL Gravel Conc Conc Wood Station FIXED MATERIAL Gravel Conc Conc Wood Station FIXED MATERIAL 0.5" 13" rise 0.9" Station Station FIXED HEIGHT 0.5" 13" rise 0.9" 4" ply fac paper FIXED FATERIAL Gravel 6" crown 12" wide south abut: South abut: FIXED FATERIAL 0.5" X 42.9" IS @ 3'134" c-e. 5/8" hook rods @ 10'0" c-c. South abut: * 8 lines 15" x 42.9" IS @ 3'134" c-e. 5/8" hook rods @ 10'0" c-c. South abut: * 8 ep 3'red Widened 1970; South abut: South abut: * 8 ep 3'red Widened 1970; South abut: South abut: South abut: * 8 ep 3're	DEPTH	PANELS	AT		PAIN	NT DODE	reo	uire	dex	cer	of GR	1.0				
MATERIAL Gravel Conc Wood EXAMBION PIXED TYPE Bit.Surf.jackarch mono single rail Sliding type HEIGHT 0-5" 13" rise 0-9". 4 ply tar paper THICKNESS 6"ecrown 12" wide south abut. south abut. FASTENINGS 6"ecrown 12" wide jackard paper FASTENINGS 6"ecrown 12" wide south abut. FASTENINGS 6"ecrown 12" wide jackard paper FASTENINGS 15" x 42.9" IS @ 3' 134" c-e. 5/8" hook rods @ 10.0" c-c. * Repaired Widened 1970. * Repaired Widened 1970.		WEARING COURSE	FLOOR	CL	JR8S	ROAD	RAIL	WAL	K RAIL	ľ		B	EARIN	IGS		
TYPE Bit. Surf. jackarch mono single rail Sliding type HEIGHT 0-5" 13" rise 0-9" 4 ply tar paper THICKNESS 6"ecrown 12" wide south abut. south abut. FASTENINGS 6"ecrown 12" wide incosed E pasts south abut. FASTENINGS 6"ecrown 12" wide incosed E pasts south abut. FASTENINGS 6"ecrown 12" wide incosed E pasts south abut. REMARKS General condition very good * 8 lines 15" x 42.9" Is @ 3' 13" c-e. 9"8" hook rods @ 10'0" c-e. * Repaired Widened 1970. * Repaired Widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L Yerical cleannee Yerical cleannee Nottingham 141/27 152 = "10" MB	MATERIAL	Gravel	Conc	Ce	onc	Woo	od.				EXPANSI	ON		F	IXED	
HEIGHT 0-5" 13" rise 0-9" 4 ply far poper THICKNESS 6"ecrown 12 wide south abut. FASTENINGE 00ne Incosed E pasts south abut. FLOOR DRAINAGE none Incosed E pasts REMARKS General condition very pand * 8 lines 15" x 42.9" Is @ 3-134" c-e. 9/8" hook rods @ 10-0" c-c. * Repaired Widened 1970. * Repaired Widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L Ventical cleanance Nottingham 141/121 12 11 12 14 14 10 112	TYPE	Bit. Surf	iackar	ch m	ono	single	rail			3	Sliding	typ	e		-	
THICKNESS General General 12 wide south abut FASTENINGS FLOOR DRAINAGE DODE Incosed E posts south abut REMARKS General condition very and ************************************	HEIGHT	0-5"	13 rise	0	-9",		14			4	t ply to	rp	aper			F
PASTENINGS Incosed E posts FLOOR DRAINAGE DODE REMARKS General condition very paod * 8 lines 15" x 42.9# Is @ 3-134" c-c. 9/8" [#] hook rods @ 10-0" c-c. * Repaired & widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L Town Nottingham Lee T.L Town Nottingham Lee T.L	THICKNESS		Gecrou	12 12"	wide					5	outh a	bu	to a			
FLOOR DRAINAGE none REMARKS General condition very good * 8 lines 15" x 42.9" Is @ 3-134" c-c. 3/8" hook rods @ 10.0" c-c. * Repaired & widened 1970. * Repaired & widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L Yottingham 141/127 Nottingham 141/127	FASTENINGS					incosed	IEpo	5/5	5							
REMARKS General condition very good * 8 lines 15" x 42.9# Is @ 3-134" c-c. 5/8" hook rods @ 10-0" c-c. * Repaired * widened 1970. * Repaired * widened 1970. 5.15 Miles N. W. from Nottingham-Lee T. L TOWN BRIDGE NO. Nottingham 141/127 Wilse No. TOWN BRIDGE NO. Nottingham 141/127 Wilse No. Nottingham 141/127 Wilse No. Nottingham 141/127 152 152 15 15 15 16 17 17 17 17 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19	FLOOR DRAINAGE	none														
* 8 lines 15" x 42.9# Is @ 3-134" c-c. 9/8" hook rods @ 10.0" c-c. * Repaired & Widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L Nottingham BRIDGE NO. ROUTE HE HE HE DID HID HIS 120 14:18 19-23' 24'-28' 29'-32+ -10' 11' 12' 13' 14' 14+ 00	REMARKS Gene	eral con	ditior	· VEI	40	ood.							_	_		
* 8 lines 15" x 42.9 [#] Is @ 3-134 c-c. 3/8 [®] hook rods @ 10-0"c-c. * Repaired & widened 1970. 5.15 Miles N.W. from Nottingham-Lee T.L. Town BRIDGE NO. ROUTE THE BETRENGTH HIS 120 14:18 120 24:28 24:2	1		1									<u> </u>	1.11			
* Repaired & widened 1970, ** Repaired & widened 1970, 5.15 Miles N.W. from Nottingham-Lee T.L. TOWN BRIDGE NO. ROUTE HE HE HID	_* 8 lin	es 15 x 4	2.9# Is	@ 3-	13/4	c-c.	5/8 91	hook	rods	s @	10-0°C	e.C.		_		
5.15 Miles N.W. from Nottingham-Lee T.L. Nottingham 141/127 11152 - HIS HE HIS					_		_			-			_			
5.15 Miles N.W. from Nottingham-Lee T.L. Nottinghom 141/127 NH 152 HE HE HE HO HIZ HIS HED 14-18 10-23 Za'-20 Za'			P		7 4			1 4								
5.15 Miles N.W. from Nottingham-Lee T.L. Nottingham 141/127 NH 152 - HB HB H10 H12 H15 H20 14-18 29-32+ -10 H1 12 12 12 12 12 12 12 12 12 12 12 12 12		×	Kep.	airec	14	Wicht	ened	19	10,					A		
5.15 Miles N.W. from Nottingham-Lee T.L. TOWN BRIDGENO. ROUTE STRENGTH Nottingham 141/127 NH 152 THE HE HE HIS HID 14-18 10/23 24-28 29-32 + -10 11 12 13 14 16 00				_												
5.15 Miles N.W. from Nottingham-Lee T.L. Town BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottinghom 141/127 WH 152 WHE HE HE HE HID HID HID HID 14:18 10:23' 24' 28' 28' 35' + -10' 11' 12' 13' 14' 14' 0C					_									_		
5.15 Miles N.W. from Nottingham-Lee T.L. Town BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 WH 152				_												
5.15 Miles N.W. from Nottingham-Lee T.L. Town BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 W152 W152 W152 US 110 H12 H13 H20 14-18 10-22 24-28 26 25 + -10 11 12 13 14 16 + 00								_					_			
5.15 Miles N.W. from Nottingham-Lee T.L. Town BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 W152								_	_			1				-
5.15 Miles N.W. from Nottingham-Lee T.L. TOWN BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 W152								-								
5.15 Miles N.W. from Nottingham-Lee T.L. Town BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 141 152 HIS HE HE HE HID HIZ HIS HE HE HE HO HIZ HIS HE									_			_				
5.15 Miles N.W. from Nottingham-Lee T.L. TOWN BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 14/1/127 14/152	-															
5.15 Miles N.W. from Nottingham-Lee T.L. TOWN BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 W152					2											
TOWN BRIDGE NO. ROUTE STRENGTH CLEAR ROADWAY VERTICAL CLEARANCE Nottingham 141/127 WH 152 HE H	E IE MA	ites NIL	Car	N	11:00	-	1-	n T	1 1							1.1
TOWN BRIDGE NO. ROUTE STRENGTH CLEAR BOADWAY VERTICAL CLEARANCE Nottingham 141/127 14152 HB HE HB HID HIR HIS HED 14:18 18:23 54.28 29.32+ -10 11 12 13 14 14+ 00	- 5.15 M	11es 11. W.	Trom	1101	The	inam		te la	beet 1	1						
Nottingham 141/127 114152 -HB HE HB HID HIZ HIB HZO 14-18 19-23 24-28 20-32+ -10 11 12 13 14 14+ 00	TOWN	BRIDGE	NO. ROUTE	2	STR	ENGTH	, 1	0	LEAR RO	ADWAY	10-11 - 11 -		ERTICA	LCLEARA	NCE	
	Nottingh	am 141/1	27 14 152	- HO H	(6 <u>H</u> 8	H10 H12 H	15 120	14-18 3	9-23	24-28	20-52+	10 11	12	12 14	18	00

StreamStats Report North River at Bridge 141/127

Region ID: NH Workspace ID: NH20190715195200441000 Clicked Point (Latitude, Longitude): 43.14859, -71.11313 Time: 2019-07-15 15:52:19 -0400

Basin Characteristics							
Parameter Code	Parameter Description	Value	Unit				
DRNAREA	Area that drains to a point on a stream	10.64	square miles				
CONIF	Percentage of land surface covered by coniferous forest	11.7727	percent				
PREBC0103	Mean annual precipitation of basin centroid for January 1 to March 15 winter period	8.35	inches				
BSLDEM30M	Mean basin slope computed from 30 m DEM	6.661	percent				
MIXFOR	Percentage of land area covered by mixed deciduous and coniferous forest	31.5015	percent				

Parameter Code	Parameter Description	Value	Unit
PREG_03_05	Mean precipitation at gaging station location for March 16 to May 31 spring period	9.6	inches
TEMP	Mean Annual Temperature	45.88	degrees F
TEMP_06_10	Basinwide average temperature for June to October summer period	61.86	degrees F
PREG_06_10	Mean precipitation at gaging station location for June to October summer period	18	inches
ELEVMAX	Maximum basin elevation	976.63	feet
SNOFALL	Mean Annual Snowfall	71.719	inches
PREBC_1112	Mean annual precipitation of basin centroid for November 1 to December 31 period	9.37	inches
PRECIPCENT	Mean Annual Precip at Basin Centroid	46.1	inches
PRECIPOUT	Mean annual precip at the stream outlet (based on annual PRISM precip data in inches from 1971-2000)	44.9	inches
MINTEMP_W	Mean winter minimum air temperature over basin surface area	15.413	degrees F
APRAVPRE	Mean April Precipitation	4.187	inches
WETLAND	Percentage of Wetlands	6.863	percent
CSL10_85	Change in elevation divided by length between points 10 and 85 percent of distance along main channel to basin divide - main channel method not known	43.3	feet per mi

Seasonal Flow Statistics Parameters[Low Flow Statewide]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.64	square miles	3.26	689
CONIF	Percent Coniferous Forest	11.7727	percent	3.07	56.2
PREBC0103	Jan to Mar Basin Centroid Precip	8.35	inches	5.79	15.1
BSLDEM30M	Mean Basin Slope from 30m DEM	6.661	percent	3.19	38.1

7/1	5/2019
., .	0/2010

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
MIXFOR	Percent Mixed Forest	31.5015	percent	6.21	46.1
PREG_03_05	Mar to May Gage Precipitation	9.6	inches	6.83	11.5
ТЕМР	Mean Annual Temperature	45.88	degrees F	36	48.7
TEMP_06_10	Jun to Oct Mean Basinwide Temp	61.86	degrees F	52.9	64.4
PREG_06_10	Jun to Oct Gage Precipitation	18	inches	16.5	23.1
ELEVMAX	Maximum Basin Elevation	976.63	feet	260	6290

Seasonal Flow Statistics Flow Report[Low Flow Statewide]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
Jan to Mar15 60 Percent Flow	9.32	ft^3/s	6.46	12.9	21.2	21.2
Jan to Mar15 70 Percent Flow	7.96	ft^3/s	5.57	11	20.7	20.7
Jan to Mar15 80 Percent Flow	6.6	ft^3/s	4.82	8.79	18.2	18.2
Jan to Mar15 90 Percent Flow	4.9	ft^3/s	3.51	6.62	19.3	19.3
Jan to Mar15 95 Percent Flow	3.84	ft^3/s	2.68	5.28	20.7	20.7
Jan to Mar15 98 Percent Flow	2.97	ft^3/s	1.85	4.47	27.1	27.1
Jan to Mar15 7 Day 2 Year Low Flow	6.33	ft^3/s	4.7	8.29	17.2	17.2
Jan to Mar15 7 Day 10 Year Low Flow	3.59	ft^3/s	2.47	5	21.5	21.5
Mar16 to May 60 Percent Flow	20	ft^3/s	16.1	24.4	12.2	12.2
Mar16 to May 70 Percent Flow	16	ft^3/s	13.1	19.3	11.4	11.4
Mar16 to May 80 Percent Flow	12.3	ft^3/s	9.93	15.1	12.4	12.4
Mar16 to May 90 Percent Flow	9.03	ft^3/s	7.1	11.3	13.7	13.7
Mar16 to May 95 Percent Flow	6.82	ft^3/s	5.27	8.68	14.8	14.8
Mar16 to May 98 Percent Flow	4.8	ft^3/s	3.49	6.43	18.1	18.1
Mar16 to May 7 Day 2 Year Low Flow	8.36	ft^3/s	6.5	10.5	14.5	14.5
Mar16 to May 7 Day 10 Year Low Flow	4.69	ft^3/s	3.54	6.06	16.2	16.2
Jun to Oct 60 Percent Flow	1.69	ft^3/s	0.893	2.89	36.7	36.7
Jun to Oct 70 Percent Flow	1.21	ft^3/s	0.605	2.16	39.9	39.9
Jun to Oct 80 Percent Flow	0.822	ft^3/s	0.377	1.55	44.5	44.5

Statistic	Value	Unit	PII	Plu	SE	SEp
Jun to Oct 90 Percent Flow	0.5	ft^3/s	0.205	1.01	50.7	50.7
Jun to Oct 95 Percent Flow	0.344	ft^3/s	0.127	0.741	57	57
Jun to Oct 98 Percent Flow	0.259	ft^3/s	0.0888	0.583	61.1	61.1
Jun to Oct 7 Day 2 Year Low Flow	0.585	ft^3/s	0.213	1.22	55.6	55.6
Jun to Oct 7 Day 10 Year Low Flow	0.218	ft^3/s	0.0535	0.548	78.5	78.5
Nov to Dec 60 Percent Flow	8.74	ft^3/s	5.82	12.5	23.3	23.3
Nov to Dec 70 Percent Flow	6.59	ft^3/s	4.19	9.79	25.9	25.9
Nov to Dec 80 Percent Flow	4.82	ft^3/s	2.97	7.35	27.8	27.8
Nov to Dec 90 Percent Flow	3.1	ft^3/s	1.78	4.96	31.6	31.6
Nov to Dec 95 Percent Flow	2.07	ft^3/s	1.05	3.61	38.3	38.3
Nov to Dec 98 Percent Flow	1.3	ft^3/s	0.53	2.6	50.6	50.6
Oct to Nov 7 Day 2 Year Low Flow	4.77	ft^3/s	3.14	6.88	23.3	23.3
Oct to Nov 7 Day 10 Year Low Flow	1.86	ft^3/s	0.955	3.19	36.6	36.6

Seasonal Flow Statistics Citations

Flynn, R.H. and Tasker, G.D.,2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams: U.S.Geological Survey Scientific Investigations Report 02-4298, 66 p. (http://pubs.water.usgs.gov/wrir02-4298)

Flow-Duration	Statistics	Parameters	ow Flow Statewide]
---------------	------------	------------	--------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.64	square miles	3.26	689
PREG_06_10	Jun to Oct Gage Precipitation	18	inches	16.5	23.1
ТЕМР	Mean Annual Temperature	45.88	degrees F	36	48.7

Flow-Duration Statistics Flow Report[Low Flow Statewide]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
60 Percent Duration	6.05	ft^3/s	4.43	8.03	18	18
70 Percent Duration	3.86	ft^3/s	2.7	5.32	20.6	20.6

7/15/2019 StreamStats								
	Statistic	Value	Unit	PII	Plu	SE	SEp	
	80 Percent Duration	2.17	ft^3/s	1.33	3.33	28	28	
	90 Percent Duration	1.05	ft^3/s	0.541	1.82	37.5	37.5	
	95 Percent Duration	0.623	ft^3/s	0.286	1.17	44.1	44.1	
	98 Percent Duration	0.384	ft^3/s	0.147	0.804	54.3	54.3	

Flow-Duration Statistics Citations

Flynn, R.H. and Tasker, G.D.,2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams: U.S.Geological Survey Scientific Investigations Report 02-4298, 66 p. (http://pubs.water.usgs.gov/wrir02-4298)

Low-Flow Statistics Parameters[Low Flow Statewide]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.64	square miles	3.26	689
ТЕМР	Mean Annual Temperature	45.88	degrees F	36	48.7
PREG_06_10	Jun to Oct Gage Precipitation	18	inches	16.5	23.1

Low-Flow Statistics Flow Report[Low Flow Statewide]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.605	ft^3/s	0.222	1.26	55.7	55.7
7 Day 10 Year Low Flow	0.226	ft^3/s	0.0544	0.575	79.4	79.4

Low-Flow Statistics Citations

Flynn, R.H. and Tasker, G.D.,2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams: U.S.Geological Survey Scientific Investigations Report 02-4298, 66 p. (http://pubs.water.usgs.gov/wrir02-4298)

Recharge Statistics Parameters[Groundwater Recharge Statewide 2004 5019]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
PREG_03_05	Mar to May Gage Precipitation	9.6	inches	6.83	11.54
CONIF	Percent Coniferous Forest	11.7727	percent	3.07	56.18
SNOFALL	Mean Annual Snowfall	71.719	inches	54.46	219.07
PREG_06_10	Jun to Oct Gage Precipitation	18	inches	16.46	23.11
ТЕМР	Mean Annual Temperature	45.88	degrees F	36.05	48.69
MIXFOR	Percent Mixed Forest	31.5015	percent	6.21	46.13
PREBC_1112	Nov to Dec Basin Centroid Precip	9.37	inches	6.57	15.2
PRECIPCENT	Mean Annual Precip at Basin Centroid	46.1	inches	37.44	75.91
PRECIPOUT	Mean Annual Precip at Gage	44.9	inches	35.83	53.11
MINTEMP_W	Mean Winter Min Temperature	15.413	degrees F	0.8	19.88

Recharge Statistics Flow Report[Groundwater Recharge Statewide 2004 5019]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
GW_Recharge_Jan_to_Mar15	5.81	in	15.5
GW_Recharge_Mar16_to_May	8.23	in	12.4
GW_Recharge_Jun_to_Oct	2.58	in	26.5
GW_Recharge_Nov_to_Dec	4.49	in	15.8
GW_Recharge_Ann	23.1	in	12.4

Recharge Statistics Citations

Flynn, R.H. and Tasker, G.D.,2004, Generalized Estimates from Streamflow Data of Annual and Seasonal Ground-Water-Recharge Rates for Drainage Basins in New Hampshire, U.S. Geological Survey Scientific Investigations Report 2004-5019, 67 p. (http://pubs.usgs.gov/sir/2004/5019/)

Peak-Flow Statistics Parameters [Peak Flow Statewide SIR2008 5206]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.64	square miles	0.7	1290
APRAVPRE	Mean April Precipitation	4.187	inches	2.79	6.23
WETLAND	Percent Wetlands	6.863	percent	0	21.8
CSL10_85	Stream Slope 10 and 85 Method	43.3	feet per mi	5.43	543

Peak-Flow Statistics Flow Report [Peak Flow Statewide SIR2008 5206]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp	Equiv. Yrs.
2 Year Peak Flood	315	ft^3/s	195	511	30.1	3.2
5 Year Peak Flood	520	ft^3/s	318	853	31.1	4.7
10 Year Peak Flood	691	ft^3/s	414	1150	32.3	6.2
25 Year Peak Flood	918	ft^3/s	533	1580	34.3	8
50 Year Peak Flood	1110	ft^3/s	623	1960	36.4	9
100 Year Peak Flood	1330	ft^3/s	726	2440	38.6	9.8
500 Year Peak Flood	1880	ft^3/s	945	3720	44.1	11

Peak-Flow Statistics Citations

Olson, S.A.,2009, Estimation of flood discharges at selected recurrence intervals for streams in New Hampshire: U.S.Geological Survey Scientific Investigations Report 2008-5206, 57 p. (http://pubs.usgs.gov/sir/2008/5206/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

Bridge No. 141/127, Route 152 over North River Flood Flow Frequency Curve

Frequency (Years)

Prob. Of Exceedance	Frequency (Years)	Z
0.5	2	0
0.2	5	0.841621386
0.1	10	1.281550794
0.05	20	1.644853
0.04	25	1.750686351
0.02	50	2.053748176
0.01	100	2.326341928
0.005	200	2.575834515
0.002	500	2.878150553

Enter Z (from table above) and Discharge. If the discharge is uknown for a certain frequency, leave fields blank. Do not use zero.

Frequency (Years)	Z	Discharge (cfs)
2	0	315
10	1.281550794	690
25	1.750686351	920
50	2.053748176	1100
100	2.326341928	1330
500	2.878150553	1880

Trendline $y = Ce^{bx}$

Enter C and b from trendline equation (Graph) to compute discharges based on trendline.

	C= <u>312.83</u> b= <u>0.6195</u>		
Frequenc (Years)	y Z	Discharge (cfs)	
2	0	313	
5	0.841621386	527	
10	1.281550794	692	
20	1.644853	867	
25	1.750686351	925	
50	2.053748176	1117	
100	2.326341928	1322	
200	2.575834515	1543	USE 1540 CFS
500	2.878150553	1861	

Horizontal	Axis Label	Positions				
Position	RP	Р	Z	Q		
1	1.003	0.997009	-2.748763461	100		
11	1.05	0.952381	-1.668391194	100		
17	1.25	0.8	-0.841621234	100		
22	2	0.5	0	100		
26	5	0.2	0.841621234	100		
28	10	0.1	1.281551566	100		
30	20	0.05	1.644853627	100		
31	25	0.04	1.750686071	1000		
32	50	0.02	2.053748911	100		
33	100	0.01	2.326347874	100		
34	200	0.005	2.575829304	100		
35	500	0.002	2.878161739	100		
Vertical G	ridlines					
	DD	7	0			
	KP	2 74070	Q		minual	100
	1.003	-2.74878	100		minvai	100
		-2.74878	100000		maxvai	100000
	4.05	4 00000	100			
	1.05	-1.66839	100			
		-1.66839	100000			
	1.05	0.04460	100			
	1.20	-0.84162	100000			
		-0.04102	100000			
	2	0	100			
	2	0	100000			
		0	100000			
	5	0.8/1621	100			
	5	0.841621	100000			
		0.041021	100000			
	10	1 281551	100			
	10	1 281551	100000			
		1.201001	100000			
	20	1 644853	100			
	20	1 644853	10000			
		1.011000	100000			
	25	1 750686	100			
		1,750686	100000			
	50	2.053748	100			
		2.053748	100000			
	100	2.326342	100			
		2.326342	100000			
	200	2.575835	100			
		2.575835	100000			
	500	2.878151	100			
		2.878151	100000			

StreamStats Report North River Downstream Subject Project

Note: Use for flow change

Basin Characteristics							
Parameter Code	Parameter Description	Value	Unit				
DRNAREA	Area that drains to a point on a stream	13.68	square miles				
APRAVPRE	Mean April Precipitation	4.185	inches				
WETLAND	Percentage of Wetlands	7.5177	percent				

Parameter Code	Parameter Description	Value	Unit
CSL10_85	Change in elevation divided by length between points 10 and 85 percent of distance along main channel to basin divide - main channel method not known	43.8	feet per mi

Peak-Flow Statistics Parameters [Peak Flow Statewide SIR2008 5206]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.68	square miles	0.7	1290
APRAVPRE	Mean April Precipitation	4.185	inches	2.79	6.23
WETLAND	Percent Wetlands	7.5177	percent	0	21.8
CSL10_85	Stream Slope 10 and 85 Method	43.8	feet per mi	5.43	543

Peak-Flow Statistics Flow Report [Peak Flow Statewide SIR2008 5206]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp	Equiv. Yrs.
2 Year Peak Flood	387	ft^3/s	240	626	30.1	3.2
5 Year Peak Flood	634	ft^3/s	388	1040	31.1	4.7
10 Year Peak Flood	838	ft^3/s	503	1400	32.3	6.2
25 Year Peak Flood	1110	ft^3/s	644	1910	34.3	8
50 Year Peak Flood	1330	ft^3/s	751	2350	36.4	9
100 Year Peak Flood	1600	ft^3/s	872	2920	38.6	9.8
500 Year Peak Flood	2230	ft^3/s	1130	4420	44.1	11

Peak-Flow Statistics Citations

Olson, S.A.,2009, Estimation of flood discharges at selected recurrence intervals for streams in New Hampshire: U.S.Geological Survey Scientific Investigations Report 2008-5206, 57 p. (http://pubs.usgs.gov/sir/2008/5206/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

Flow Change Downstream of Bridge No. 141/127, Route 152 over North River Flood Flow Frequency Curve

Frequency (Years)

Prob. Of Exceedance	Frequency (Years)	Z
0.5	2	0
0.2	5	0.841621386
0.1	10	1.281550794
0.05	20	1.644853
0.04	25	1.750686351
0.02	50	2.053748176
0.01	100	2.326341928
0.005	200	2.575834515
0.002	500	2.878150553

Enter Z (from table above) and Discharge. If the discharge is uknown for a certain frequency, leave fields blank. Do not use zero.

Frequency (Years)	Z	Discharge (cfs)
2	0	390
10	1.281550794	840
25	1.750686351	1110
50	2.053748176	1330
100	2.326341928	1600
500	2.878150553	2230

Trendline $y = Ce^{bx}$

Enter C and b from trendline equation (Graph) to compute discharges based on trendline.

	C= <u>387.63</u> b= <u>0.6056</u>	
Frequency (Years)	y Z	Discharge (cfs)
2	0	388
5	0.841621386	645
10	1.281550794	842
20	1.644853	1050
25	1.750686351	1119
50	2.053748176	1345
100	2.326341928	1586
200	2.575834515	1845
500	2.878150553	2215

Horizontal	Axis Label	Positions				
Position	RP	Р	Z	Q		
1	1.003	0.997009	-2.748763461	100		
11	1.05	0.952381	-1.668391194	100		
17	1.25	0.8	-0.841621234	100		
22	2	0.5	0	100		
26	5	0.2	0.841621234	100		
28	10	0.1	1.281551566	100		
30	20	0.05	1.644853627	100		
31	25	0.04	1.750686071	1000		
32	50	0.02	2.053748911	100		
33	100	0.01	2.326347874	100		
34	200	0.005	2.575829304	100		
35	500	0.002	2.878161739	100		
Vertical G	ridlines					
	DD	7	0			
	KP	2 74070	Q 100		minual	100
	1.003	-2.74878	100		minvai	100
		-2.74878	100000		maxvai	100000
	4.05	4 00000	100			
	1.05	-1.66839	100			
		-1.66839	100000			
	1.05	0.04460	100			
	1.20	-0.84162	100000			
		-0.04102	100000			
	2	0	100			
	2	0	100000			
		0	100000			
	5	0.8/1621	100			
	5	0.841621	100000			
		0.041021	100000			
	10	1 281551	100			
	10	1 281551	10000			
		1.201001	100000			
	20	1 644853	100			
	20	1 644853	10000			
		1.011000	100000			
	25	1 750686	100			
		1,750686	100000			
	50	2.053748	100			
		2.053748	100000			
	100	2.326342	100			
		2.326342	100000			
	200	2.575835	100			
		2.575835	100000			
	500	2.878151	100			
		2.878151	100000			

NOAA Atlas 14, Volume 10, Version 3 Location name: Nottingham, New Hampshire, USA* Latitude: 43.1482°, Longitude: -71.1128° Elevation: 233.2 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-k	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.304 (0.237-0.393)	0.364 (0.283-0.470)	0.462 (0.357-0.598)	0.544 (0.418-0.708)	0.656 (0.489-0.892)	0.740 (0.540-1.03)	0.828 (0.588-1.19)	0.928 (0.625-1.36)	1.07 (0.694-1.63)	1.19 (0.753-1.85)
10-min	0.431 (0.335-0.556)	0.516 (0.401-0.666)	0.655 (0.507-0.849)	0.770 (0.593-1.00)	0.929 (0.693-1.26)	1.05 (0.766-1.46)	1.17 (0.833-1.69)	1.32 (0.885-1.94)	1.52 (0.983-2.31)	1.68 (1.07-2.62)
15-min	0.507 (0.394-0.654)	0.607 (0.472-0.784)	0.771 (0.596-0.997)	0.906 (0.697-1.18)	1.09 (0.815-1.49)	1.23 (0.901-1.71)	1.38 (0.981-1.99)	1.55 (1.04-2.28)	1.79 (1.16-2.72)	1.98 (1.25-3.08)
30-min	0.695 (0.540-0.896)	0.832 (0.646-1.07)	1.06 (0.817-1.37)	1.24 (0.955-1.62)	1.50 (1.12-2.04)	1.69 (1.23-2.35)	1.89 (1.34-2.72)	2.12 (1.43-3.12)	2.45 (1.59-3.73)	2.72 (1.72-4.23)
60-min	0.883 (0.686-1.14)	1.06 (0.820-1.36)	1.34 (1.04-1.74)	1.58 (1.21-2.05)	1.90 (1.42-2.58)	2.14 (1.57-2.98)	2.40 (1.71-3.46)	2.69 (1.81-3.96)	3.12 (2.02-4.74)	3.47 (2.19-5.38)
2-hr	1.16 (0.907-1.49)	1.39 (1.09-1.79)	1.77 (1.38-2.28)	2.08 (1.61-2.70)	2.52 (1.89-3.41)	2.84 (2.09-3.93)	3.18 (2.28-4.59)	3.59 (2.42-5.26)	4.20 (2.73-6.36)	4.72 (3.00-7.29)
3-hr	1.35 (1.06-1.73)	1.63 (1.27-2.08)	2.08 (1.62-2.67)	2.45 (1.90-3.16)	2.97 (2.23-4.01)	3.35 (2.47-4.63)	3.76 (2.71-5.41)	4.25 (2.88-6.20)	5.00 (3.25-7.54)	5.64 (3.58-8.67)
6-hr	1.74 (1.37-2.21)	2.11 (1.66-2.68)	2.71 (2.13-3.46)	3.21 (2.51-4.12)	3.90 (2.96-5.25)	4.41 (3.28-6.08)	4.97 (3.60-7.12)	5.64 (3.82-8.17)	6.66 (4.35-9.99)	7.54 (4.81-11.5)
12-hr	2.18 (1.73-2.75)	2.67 (2.11-3.37)	3.48 (2.74-4.40)	4.14 (3.25-5.28)	5.06 (3.85-6.77)	5.74 (4.29-7.86)	6.48 (4.72-9.24)	7.37 (5.02-10.6)	8.74 (5.72-13.0)	9.92 (6.35-15.1)
24-hr	2.58 (2.06-3.24)	3.22 (2.56-4.04)	4.27 (3.39-5.38)	5.14 (4.05-6.51)	6.34 (4.85-8.45)	7.22 (5.42-9.86)	8.18 (6.01-11.7)	9.39 (6.41-13.5)	11.3 (7.40-16.7)	12.9 (8.29-19.5)
2-day	2.91 (2.33-3.62)	3.70 (2.96-4.62)	5.01 (3.99-6.26)	6.08 (4.82-7.65)	7.57 (5.84-10.1)	8.65 (6.56-11.8)	9.86 (7.33-14.1)	11.4 (7.83-16.3)	14.0 (9.21-20.6)	16.3 (10.5-24.4)
3-day	3.17 (2.54-3.93)	4.02 (3.23-5.00)	5.43 (4.34-6.76)	6.59 (5.23-8.26)	8.19 (6.34-10.9)	9.35 (7.12-12.7)	10.7 (7.95-15.2)	12.4 (8.49-17.6)	15.2 (10.0-22.3)	17.7 (11.4-26.5)
4-day	3.41 (2.75-4.22)	4.30 (3.46-5.33)	5.75 (4.61-7.15)	6.96 (5.54-8.70)	8.61 (6.68-11.4)	9.82 (7.49-13.3)	11.2 (8.35-15.9)	13.0 (8.90-18.4)	15.9 (10.5-23.3)	18.5 (12.0-27.6)
7-day	4.13 (3.34-5.08)	5.06 (4.08-6.23)	6.58 (5.29-8.13)	7.84 (6.26-9.74)	9.57 (7.44-12.6)	10.8 (8.28-14.6)	12.2 (9.16-17.3)	14.1 (9.72-19.9)	17.1 (11.3-24.9)	19.8 (12.8-29.4)
10-day	4.81 (3.90-5.90)	5.77 (4.67-7.08)	7.33 (5.92-9.04)	8.63 (6.92-10.7)	10.4 (8.12-13.6)	11.7 (8.97-15.7)	13.2 (9.84-18.4)	15.0 (10.4-21.1)	18.0 (12.0-26.1)	20.6 (13.4-30.5)
20-day	6.80 (5.54-8.29)	7.86 (6.40-9.59)	9.58 (7.77-11.7)	11.0 (8.87-13.6)	13.0 (10.1-16.7)	14.5 (11.0-19.0)	16.0 (11.8-21.8)	17.8 (12.4-24.8)	20.5 (13.7-29.5)	22.7 (14.7-33.3)
30-day	8.44 (6.90-10.3)	9.57 (7.82-11.6)	11.4 (9.30-13.9)	13.0 (10.5-15.9)	15.1 (11.8-19.2)	16.7 (12.7-21.7)	18.3 (13.5-24.6)	20.1 (14.0-27.8)	22.5 (15.1-32.3)	24.4 (15.9-35.7)
45-day	10.5 (8.59-12.7)	11.7 (9.58-14.2)	13.7 (11.2-16.6)	15.4 (12.5-18.8)	17.6 (13.8-22.3)	19.4 (14.8-25.0)	21.2 (15.5-28.1)	22.9 (16.0-31.5)	25.0 (16.8-35.8)	26.6 (17.4-38.9)
60-day	12.2 (10.0-14.7)	13.5 (11.1-16.3)	15.6 (12.7-18.9)	17.3 (14.1-21.1)	19.8 (15.4-24.9)	21.7 (16.5-27.8)	23.5 (17.2-30.9)	25.2 (17.7-34.6)	27.2 (18.3-38.8)	28.6 (18.7-41.7)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 43.1482°, Longitude: -71.1128°

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Oct 26 17:28:19 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale map

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX D: Hydraulic Analysis

HEC-RAS Input/Output

HEC-RAS HEC-RAS 6.1.0 September 2021 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	X XXXXXX XXXX			XXXX		XX		XXXX	
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	Х	Х			Х	Х	Х	Х	Х
XXXX	XXX	XXXX	Х		XXX	ХХ	ХХ	ХХХ	XXX	XXXX
Х	Х	Х	Х			Х	Х	Х	Х	Х
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	XXXXXX	ХХ	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA Project Title: Replacement of Bridge No. 141/127 Project File : 141-127 Route 152.prj Run Date and Time: 10/26/2022 12:20:14 PM

Project in English units

Project Description: NH Route 152 over North River - Final Hydraulic Design Report

PLAN DATA

Plan Title: Existing Conditions

Plan File : t:\Projects\New
Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS
Modeling\HEC-RAS\141-127 Route 152.p01

Geometry Title: Existing Conditions Geometry File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.g01

Flow Title : StreamStats Design Flow File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.f01

Plan Description:

Existing Conditions NAVD88 Daturm

Plan Summary Information: Number of: Cross Sections = 11 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 = 1 Lateral Structures = Bridges 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 = 0.33 Maximum difference tolerance = 0.001 Flow tolerance factor Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only

Friction Slope Method:Average ConveyanceComputational Flow Regime:Subcritical Flow

FLOW DATA

Flow Title: StreamStats Design
Flow File : t:\Projects\New
Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS
Modeling\HEC-RAS\141-127 Route 152.f01

Flow Data (cfs)

River	Reach	RS	2 YR	!	5 YR
10 YR	25 YR	50 YR	100 YR	200 YR	500
YR					
NORTH	MID	2520	315		520
690	920	1100	1330	1540	
1880					
NORTH	MID	1545	390		630
840	1110	1330	1600	1850	
2230					
North River	RT 152	1971			

Boundary Conditions

River Downstream	Reach	Profile	Upstream	
NORTH	MID	2 YR	Critical	
Normal $S = 0.002$				
NORTH	MID	5 YR	Critical	
Normal $S = 0.002$				
NORTH	MID	10 YR	Critical	
Normal $S = 0.002$				
NORTH	MID	25 YR	Critical	
Normal S = 0.002				
NORTH	MID	50 YR	Critical	
Normal S = 0.002				
NORTH	MID	100 YR	Critical	
Normal $S = 0.002$				
NORTH	MID	200 YR	Critical	
Normal $S = 0.002$				
NORTH	MID	500 YR	Critical	
Normal $S = 0.002$				

GEOMETRY DATA

Geometry Title: Existing Conditions Geometry File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.g01

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2520

INPUT Description: US LIMIT Station Elevation Data 75 num= Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -298.56 242.06 -278.59 240.38 -264.7 239.67 -255.04 239.15 -243.35 238.18 -225.46 237.92 -218.81 237.25 -208.2 236.68 -199.53 235.96 -192.1 235.02 -187 234.78 -168.2 233.23 -164.44 233.23 -153.38 232.62 -146.37 232.53

-138.12 232.67 -133.06 232.91 -119.47 232.93 -107.01 233.42 -86.52 233.18 -77.55 232.89 -62.5 232.77 -57.16 233.2 -51.19 233.12 -41.29 232.91 -31.1 232.93 -30 232.77 -28.84 232.45 -27.47 232.27 -24.31 231.87 -22.76 231.1 230.2 -6.76 -17.36 226.7 .04 226.8 2.04 226.8 10.44 227 17.64 227.9 21.14 229 21.74 229.7 23.34 231.9 23.7 233.01 35.74 233.39 45.93 233.12 56.19 233.23 63.26 233.55 76.91 233.49 85.59 233.15 93.26 233.03 99.54 232.95 115.89 233.12 121.84 233.32 136.01 233.45 139.96 233.12 145.63 233.25 157.93 233.04 167.15 233.16 181.28 233.04 187.6 232.88 197.74 232.93 204.54 233.27 215.24 233.05 221.6 233.24 230.6 233.25 236.62 233.79 254.39 233.6 266.85 233.72 284.98 234.2 296.98 234.35 318.36 235.29 329.67 235.44 340.49 358.58 235.76 378.36 237.12 391.61 235.17 237.4 413.33 240 3 Manning's n Values num= Sta n Val Sta n Val Sta n Val -298.56 .08 -17.36 .08 .03 21.74 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -17.36 21.74 185 172 163 .1 .3 Ineffective Flow num= 1 Sta R Elev Permanent Sta L 318.5 413.33 237.8 F CROSS SECTION RIVER: NORTH REACH: MID RS: 2348 INPUT Description: Station Elevation Data 74 num= Elev Elev Sta Elev Elev Elev Sta Sta Sta Sta -212.51 240.46 -209.38 239.92 -207.42 239.76 -202.36 239.04 -198.95 238.81 -190.48 238.06 -187.65 238.02 -175.42 237.3 -168.06 236.61 -157.91 235.35 234.74 -143.95 234.45 -139.87 234.44 -134.47 233.96 -126.19 -154.1 233.71 233.26 -108.29 233.41 -118.58 -99.55 233.3 -95.74 233.05 -90.15 232.88 -80.52 232.88 232.8 -84.75 232.89 -76.04 -72.6 232.47 -66.56 232.44 -63.13 232.75 -59.89 232.78 -53.4 232.93 -50.16 232.94 -44.75 232.94 -32.3 232.92 -38.27 233.04 -27.46 232.7 -20.98 232.59 -20.28 229.6 -16.28 228.8 -7.88 226.8 0 226.43 .72 226.4 8.12 227.8 10.82 229.4 15.12 231.8 15.91 232.52 21.15 232.85 36.24 233 52.31 233.01 60.38 232.59 74.36 232.66 232.68 92.07 98.47 232.7 104.96 232.65 112.46 232.66 132.67 232.41 144.54 232.56 176.29 232.48 186.14 232.56 232.51 210.23 232.65 245.44 232.58 198.63 254.02 233.59 264.41 233.78 271.54 233.76 298.91 233.94 312.48 233.95 318.62 233.78 337.04 233.64 346.64 233.47 355.84 233.34 378.27 233.21 399.64 233.49 452.8 237.43 421.28 234.34 438.9 236.65 478.3 238

Manning's n Values

3

num=

Sta n Val Sta n Val n Val Sta -20.28 -212.51 .08 .03 .08 10.82 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -20.2810.82 82 80 82 .1 .3 Ineffective Flow num= 2 Sta L Sta R Elev Permanent -212.51 -146.5 237 F F 478.3 237.8 146.5 CROSS SECTION **RIVER: NORTH** REACH: MID RS: 2265 INPUT Description: BRG APPROACH Station Elevation Data num= 72 Sta Elev Elev Sta Elev Sta Elev Sta Elev Sta -264.42 240.04 -255.02 239.82 -249.54 239.4 -238.56 238.9 -226.67 238.48 236.94 -199.16 236.14 -180.55 234.95 -175.95 -224.01 238.2 -204.21 234.83 -154.84 233.52 -140.56 233.76 -132.1 232.91 -119.86 232.72 -111.63 232.57 232.99 232.99 -59.88 232.92 -50.94 233.05 -100.32 -81.78 -35.51 232.84 232.69 -20.28 229.35 -16.28 228.55 -7.88 226.55 -22.49 0 226.18 .72 226.15 8.12 227.55 10.82 229.15 11.06 232.48 30.8 232.45 232.64 46.88 49.45 233.22 58.44 233.04 76.49 233.36 79 232.5 232.5 90.56 232.92 97.26 232.97 87.6 109.83 233.38 113.87 232.86 121.39 232.51 129.1 233.3 130.38 233.91 161.21 234.01 174.11 233.28 184.49 233.28 189.68 232.8 195.87 232.82 204.22 233.04 221.63 233.31 235.35 233.44 241.9 233.71 252.81 233.91 259.28 234.22 263.8 234.42 274.65 234.15 280.11 234.08 284.48 233.55 290.9 233.38 300.85 233.5 311.23 233.32 320.09 233.25 326.42 233.91 339.09 233.89 342.87 233.77 355.44 233.42 369.21 233.43 382.73 233.14 389.71 234.01 394.74 235.3 401.1 236.05 403.63 238.21 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val -264.42 .08 -20.28 .08 .03 10.82 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -20.28 10.82 21 34 43 .3 .5 2 Ineffective Flow num= Sta L Sta R Elev Permanent F -264.42 -64.5 237 64.5 403.63 237.8 F

CROSS SECTION

RIVER:	NORTH		
REACH:	MID	RS:	2231

INPUT Description: BRG US Station Elevation Data

Sta	Elev								
-283.71	239.35	-279.8	239.34	-264.32	239.01	-254.45	238.64	-248.85	238.15
-246.12	238.08	-241.08	237.61	-234.29	237.6	-230.84	237.41	-221.55	237.2
-218.59	236.88	-210.36	236.63	-203.07	236.15	-198.73	236.03	-195.83	235.77
-182	234.89	-176.85	234.36	-174.28	234.3	-169.97	233.91	-158.59	233.58
-151.35	233.37	-142.12	232.96	-134.8	232.86	-125.48	233.11	-122.82	232.69
-118.24	232.47	-112.53	232.83	-107.9	232.62	-100.95	232.61	-96.52	233
-91.94	232.99	-84.1	232.73	-81.65	232.51	-75.91	232.5	-64.92	232.55
-61.34	232.68	-53.35	232.77	-46.86	232.74	-39.19	232.42	-31.34	232.52
-23.07	232.51	-21	232.58	-18.56	229.22	-8.46	226.88	-5.98	226.37
2.36	226.07	11.63	227.93	21.25	229.33	25.56	232.49	26.42	232.45
31.57	233.03	39.01	233.03	52.15	233.26	64.87	233.11	67.97	232.67
79.17	232.67	81.74	232.76	86.59	233	90.78	233.09	95.88	233.08
99.76	233.02	104.18	232.78	110.05	232.5	115.19	232.77	118.66	232.78
126.94	233.24	133.3	233.76	136.25	233.72	142.46	234	145.56	234.35
149.7	234.47	155.91	234.87	158.94	235.31	165.22	235.99	171.42	236.78
174.38	237.84	176.6	237.73	194.43	237.63	220	238.16		

79

Manning's	n V	alues		nun	1=		3		
Sta	n	Val	Sta	n	Val		Sta	n	Val
-283.71		.08	-18.56		.03	23	1.25		.08

num=

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -18.56 21.25 86 86 86 .5 .3 2 Ineffective Flow num= Sta L Sta R Elev Permanent -283.71 -30.5 237 F F 30.5 220 237.8

BRIDGE

RIVER: NORTH REACH: MID RS: 2192 INPUT Description: Distance from Upstream XS = 22 Deck/Roadway Width = 32.7 Weir Coefficient 2.6 = Upstream Deck/Roadway Coordinates num= 14 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -290 237.3 237.2 -340 237.4 -240
-190	237.1	-140	237		-90	237	
-40	237.1	-8.5	237.5	235.5	8.5	237.6	235.5
60	238	110	238.2		160	238.4	
210	238.6	260	238.9				

Upstream Bridge Cross Section Data

Station E	levatior	n Data	num=	79					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-283.71	239.35	-279.8	239.34	-264.32	239.01	-254.45	238.64	-248.85	238.15
-246.12	238.08	-241.08	237.61	-234.29	237.6	-230.84	237.41	-221.55	237.2
-218.59	236.88	-210.36	236.63	-203.07	236.15	-198.73	236.03	-195.83	235.77
-182	234.89	-176.85	234.36	-174.28	234.3	-169.97	233.91	-158.59	233.58
-151.35	233.37	-142.12	232.96	-134.8	232.86	-125.48	233.11	-122.82	232.69
-118.24	232.47	-112.53	232.83	-107.9	232.62	-100.95	232.61	-96.52	233
-91.94	232.99	-84.1	232.73	-81.65	232.51	-75.91	232.5	-64.92	232.55
-61.34	232.68	-53.35	232.77	-46.86	232.74	-39.19	232.42	-31.34	232.52
-23.07	232.51	-21	232.58	-18.56	229.22	-8.46	226.88	-5.98	226.37
2.36	226.07	11.63	227.93	21.25	229.33	25.56	232.49	26.42	232.45
31.57	233.03	39.01	233.03	52.15	233.26	64.87	233.11	67.97	232.67
79.17	232.67	81.74	232.76	86.59	233	90.78	233.09	95.88	233.08
99.76	233.02	104.18	232.78	110.05	232.5	115.19	232.77	118.66	232.78
126.94	233.24	133.3	233.76	136.25	233.72	142.46	234	145.56	234.35
149.7	234.47	155.91	234.87	158.94	235.31	165.22	235.99	171.42	236.78
174.38	237.84	176.6	237.73	194.43	237.63	220	238.16		

Manning's	n Value	es	num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
-283.71	.08	-18.56	.03	21.25	.08

Bank Sta: Left	Right	Coeff Contr.	Expan.
-18.56	21.25	.3	.5
Ineffective Flow	num=	2	
Sta L Sta R	Elev	Permanent	
-283.71 -30.5	237	F	
30.5 220	237.8	F	

Downstream Deck/Roadway Coordinates num= 14

Sta H	Hi Cord Lo C	ord Sta	Hi Cord	Lo Cord	Sta	Hi Cord	Lo Cord
-340	237.4	-290	237.3		-240	237.2	
-190	237.1	-140	237		-90	237	
-40	237.1	-8.5	237.5	235.5	8.5	237.6	235.5
60	238	110	238.2		160	238.4	
210	238.6	260	238.9				

Downstre	am Bridge	Cross S	ection [Data					
Station	Elevation	Data	num=	90					
Sta	n Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-343.96	239.18	-331.14	238.4	-313.22	237.93	-288.12	237.13	-275.37	236.7
-267.7	235.63	-256.8	234.78	-242.12	234.53	-228.68	234.12	-223.17	233.69

-201.77 233.56 -179.58 233.68 -170.41 233.64 -157.83 233.63 -152.98 233.57 -150 233.41 -147.3 233.27 -137.67 233.29 -135.3 232.91 -125.71 232.58 -120.9 232.52 -115.43 232.53 -110.3 232.55 -104.12 232.56 -94.88 232.53 -87.68 232.6 -82.54 232.64 -79.46 232.65 -77.04 232.47 -69.18 232.56 232.5 -57.39 232.64 -50.67 232.58 -46.08 232.64 -38.34 232.94 -63.01 -37.31 232.85 -37.05 232.77 -36.28 232.64 -27.88 230 -23.91 227.46 -18.08 227.97 -10.78 226.84 0 226.89 6.83 228.1 10.78 230.5 27.45 232.82 36.48 233.14 44.22 233.34 49.04 233.48 53.41 233.46 60.34 233.37 73.71 233.36 76.47 232.77 91.18 232.87 80.34 232.69 100.43 232.96 105.57 233.11 112.77 233.09 125.49 232.85 129.21 233.41 134.35 233.73 136.41 233.67 138.25 233.6 139.98 233.54 143.44 233.59 148.59 233.59 150.43 145.66 233.71 233.6 152.81 233.75 156.87 233.83 160.38 234.29 161.67 234.67 162.96 234.95 165.57 235.09 168.16 235.52 170.75 235.61 172.05 235.71 173.35 235.89 177.24 236.25 179.23 236.28 180.24 236.35 236.34 183.72 236.48 186.28 237.07 182.27 188.91 237.77 189.86 192.8 239.12 194.47 239.5 197.03 239.88 198.23 239.97 238.2 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val -343.96 .08 -27.88 .03 10.78 .08 Bank Sta: Left Right Coeff Contr. Expan. 10.78 -27.88 .3 .5 2 Ineffective Flow num= Sta L Sta R Elev Permanent -343.96 -24.15 236 F F 24.15 198.23 236.8 1 horiz. to 1.0 vertical Upstream Embankment side slope = Downstream Embankment side slope 1 horiz. to 1.0 vertical = Maximum allowable submergence for weir flow = .98 Elevation at which weir flow begins = Energy head used in spillway design = Spillway height used in design = Weir crest shape = Broad Crested Number of Bridge Coefficient Sets = 1 Low Flow Methods and Data Energy Selected Low Flow Methods = Highest Energy Answer High Flow Method Pressure and Weir flow Submerged Inlet Cd Submerged Inlet + Outlet Cd = .8 Max Low Cord Additional Bridge Parameters Add Friction component to Momentum

Do not add Weight component to Momentum Class B flow critical depth computations use critical depth inside the bridge at the upstream end Criteria to check for pressure flow = Upstream energy grade line

BRIDGE OUTPUT Profile #2 YR

E.G. US. (ft)	231.03	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	230.95	E.G. Elev (ft)	230.95
230./3	215 00	$H \in Elow(f+)$	220 66
Q TOLAL (CTS)	313.00	W.S. EIEV (+C)	230.00
0 Bridge (cfs)	315.00	Crit W.S. (ft)	228.62
229.47	515100		220102
Q Weir (cfs) 3.21		Max Chl Dpth (ft)	4.59
Weir Sta Lft (ft) 6.59		Vel Total (ft/s)	4.31
Weir Sta Rgt (ft)		Flow Area (sq ft)	73.13
Weir Submerg		Froude # Chl	0.35
0.65			
Weir Max Depth (ft)		Specif Force (cu ft)	196.71
133.43 Min El Wain Elow (ft)	227 01	Huda Doath (ft)	1 22
2.75	237.01	nyur beptir (Tt)	4.22
Min El Prs (ft)	235.50	W.P. Total (ft)	24.76
21.91			
Delta EG (ft)	0.62	Conv. Total (cfs)	7455.2
3981.3			
Delta WS (ft)	0.71	Top Width (ft)	17.33
1/.3/	1/1 22	Enstra Loss (ft)	0 10
	141.52		0.10
BR Open Vel (ft/s)	6.59	C & E Loss (ft)	0.12
0.25			
BR Sluice Coef		Shear Total (lb/sq ft)	0.33
0.85			
BR Sel Method	Energy only	Power Total (lb/ft s)	1.42
5.62			

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream

energy. This is not physically possible, the momentum answer has been disregarded.

Note: Momentum answer is not valid if the water surface is above the low chord or

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #5 YR

E.G. US. (ft)	232.40	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	232.29	E.G. Elev (ft)	232.27
231.94			
Q Total (cfs)	520.00	W.S. Elev (ft)	231.78
230.78			
Q Bridge (cfs)	520.00	Crit W.S. (ft)	229.48
230.34			
Q Weir (cfs)		Max Chl Dpth (ft)	5.71
3.93			
Weir Sta Lft (ft)		Vel Total (ft/s)	5.62
8.61			
Weir Sta Rgt (ft)		Flow Area (sq ft)	92.49
60.40			
Weir Submerg		Froude # Chl	0.41
0.77			
Weir Max Depth (ft)		Specif Force (cu ft)	338.16
247.38			
Min El Weir Flow (ft)	237.01	Hydr Depth (ft)	5.36
3.49			
Min El Prs (ft)	235.50	W.P. Total (ft)	27.01
23.36			
Delta EG (ft)	1.00	Conv. Total (cfs)	10408.7
5635.7			
Delta WS (ft)	1.15	Top Width (ft)	17.25
17.32			
BR Open Area (sq ft)	141.32	Frctn Loss (ft)	0.14
0.08			
BR Open Vel (ft/s)	8.61	C & E Loss (ft)	0.20
0.44			
BR Sluice Coef		Shear Total (lb/sq ft)	0.53

1.37			
BR Sel Method	Energy only	Power Total (lb/ft s)	3.00
11.05			

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Momentum answer is not valid if the water surface is above the low chord or Note: if there is weir flow. The momentum answer has been disregarded. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #10 YR

E.G. US. (ft)	233.44	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	233.31	E.G. Elev (ft)	233.27
232.84			
Q Total (cfs)	690.00	W.S. Elev (ft)	232.62
231.30			
Q Bridge (cfs)	690.00	Crit W.S. (ft)	230.11
230.97			
Q Weir (cfs)		Max Chl Dpth (ft)	6.55
4.45			
Weir Sta Lft (ft)		Vel Total (ft/s)	6.45
9.96			
Weir Sta Rgt (ft)		Flow Area (sq ft)	106.98
69.29			
Weir Submerg		Froude # Chl	0.44
0.83			
Weir Max Depth (ft)		Specif Force (cu ft)	469.54

355.12			
Min El Weir Flow (ft)	237.01	Hydr Depth (ft)	6.22
4.01			
Min El Prs (ft)	235.50	W.P. Total (ft)	28.69
24.39			
Delta EG (ft)	1.30	Conv. Total (cfs)	12741.9
6884.5			
Delta WS (ft)	1.49	Top Width (ft)	17.19
17.28			
BR Open Area (sq ft)	141.32	Frctn Loss (ft)	0.16
0.09			
BR Open Vel (ft/s)	9.96	C & E Loss (ft)	0.27
0.61			
BR Sluice Coef		Shear Total (lb/sq ft)	0.68
1.78			
BR Sel Method	Energy only	Power Total (lb/ft s)	4.40
17.74			

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. BRIDGE OUTPUT Profile #25 YR 234.77 Element Inside BR US E.G. US. (ft) Inside BR DS W.S. US. (ft) E.G. Elev (ft) 234.62 234.55

233.97			
Q Total (cfs)	920.00	W.S. Elev (ft)	233.71
231.84			
Q Bridge (cfs)	920.00	Crit W.S. (ft)	230.88
231.73			
Q Weir (cfs)		Max Chl Dpth (ft)	7.64
4.99			
Weir Sta Lft (ft)		Vel Total (ft/s)	7.32
11.71			
Weir Sta Rgt (ft)		Flow Area (sq ft)	125.72
78.57			
Weir Submerg		Froude # Chl	0.47
0.92			
Weir Max Depth (ft)		Specif Force (cu ft)	667.54
516.12			
Min El Weir Flow (tt)	237.01	Hydr Depth (+t)	7.34
4.56			
Min El Prs (tt)	235.50	W.P. lotal (+t)	30.88
25.4/	4 76		45077 7
Delta EG (+t)	1.76	Conv. lotal (c+s)	158//./
824/./	2 04	T	47 40
Delta WS (+t)	2.01	Top Width (ft)	17.12
17.25 DD Open Area (eq.(t))	141 22		0.10
BR Open Area (sq ft)	141.32	Freth Loss (ft)	0.19
0.09	11 71		0.00
BR Open vel (TC/S)	11./1	C & E LOSS (TC)	0.39
0.80 PR Sluice Coof		Shaan Tatal (lh/ca ft)	
BR STUICE COEF		Shear Iolai (10/54 ft)	0.85
2.40 PP Sol Mothod	Enongy only	Poulon Total (lb/f+ c)	<i>د</i> ٦٢
DR SET MELHOU	Energy only	FOWER TOLAT (ID/IL S)	0.25
20.00			

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #50 YR

E.G. US. (ft)	236.55	Element	Inside BR US
Inside BR DS			
W.S. US. (+t)	236.42	E.G. Elev (+t)	236.55
234.81	1100 00		
Q IOLAL (CTS)	1100.00	W.S. EIEV (TC)	235.50
233.19	1100 00	Crit WS (ft)	221 11
232 30	1100.00		231.44
O Weir (cfs)		Max Chl Dnth (ft)	9 43
6 34		hax chi bpen (re)	5.45
Weir Stalft (ft)		Vel Total (ft/s)	7.04
10.79			,
Weir Sta Rgt (ft)		Flow Area (sq ft)	156.20
101.91			
Weir Submerg		Froude # Chl	0.40
0.76			
Weir Max Depth (ft)		Specif Force (cu ft)	950.92
672.80			
Min El Weir Flow (ft)	237.01	Hydr Depth (ft)	
5.94			
Min El Prs (ft)	235.50	W.P. Total (ft)	51.45
28.18			
Delta EG (+t)	2.90	Conv. Total (cfs)	16220.8
	2 22		
Delta WS (Tt)	3.23	lop width (ft)	
1/.16	1/1 22	Enstra Loca (ft)	
BR Open Area (Sq TC)	141.52	FICTILLOSS (IC)	
BR Onen Vel (ft/s)	7 78	$C \& E \log (ft)$	
	/:/0		
BR Sluice Coef	0.37	Shear Total (lb/sg ft)	0.87
1.93			
BR Sel Method	Press Only	Power Total (lb/ft s)	6.14
20.85	2		

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream

energy. This is not physically possible, the momentum answer has been disregarded. Momentum answer is not valid if the water surface is above the low chord or Note: if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is below the minimum elevation for pressure flow. The sluice gate equations were used for pressure flow. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #100 YR

237.09	Element	Inside BR US
227 02	$F \in Flow(ft)$	227 00
257.02	E.G. EIEV (IC)	257.09
1330.00	W.S. Elev (ft)	237.02
1323.41	Crit W.S. (ft)	232.11
5.85	Max Chl Dpth (ft)	10.95
-184.29	Vel Total (ft/s)	8.46
-45.71	Flow Area (sq ft)	157.15
0.00	Froude # Chl	0.45
0.09	Specif Force (cu ft)	1298.96
••••		
237.01	Hydr Depth (ft)	2.37
235.50	W.P. Total (ft)	117.87
2.78	Conv. Total (cfs)	
3.23	Top Width (ft)	66.42
141.32	Frctn Loss (ft)	
9.36	C & E Loss (ft)	
0.43	Shear Total (lb/sq ft)	
Press/Weir	Power Total (lb/ft s)	
	237.09 237.02 1330.00 1323.41 5.85 -184.29 -45.71 0.00 0.09 237.01 235.50 2.78 3.23 141.32 9.36 0.43 Press/Weir	 237.09 Element 237.02 E.G. Elev (ft) 1330.00 W.S. Elev (ft) 1323.41 Crit W.S. (ft) 5.85 Max Chl Dpth (ft) -184.29 Vel Total (ft/s) -45.71 Flow Area (sq ft) 0.00 Froude # Chl 0.09 Specif Force (cu ft) 237.01 Hydr Depth (ft) 235.50 W.P. Total (ft) 2.78 Conv. Total (cfs) 3.23 Top Width (ft) 141.32 Frctn Loss (ft) 9.36 C & E Loss (ft) 0.43 Shear Total (lb/sq ft)

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is below the minimum elevation for pressure flow. The sluice gate equations were used for pressure flow. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water Note: surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the energy Note: is based on critical depth over the weir.

The water surface has been projected.

BRIDGE OUTPUT Profile #200 YR

E.G. US. (ft)	237.44	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	237.36	E.G. Elev (ft)	237.44
237.39			
Q Total (cfs)	1540.00	W.S. Elev (ft)	237.36
237.29			
Q Bridge (cfs)	1416.68	Crit W.S. (ft)	232.69
233.56			
Q Weir (cfs)	123.33	Max Chl Dpth (ft)	11.29
10.44			
Weir Sta Lft (ft)	-231.39	Vel Total (ft/s)	7.17
8.10			
Weir Sta Rgt (ft)	-13.19	Flow Area (sq ft)	214.64
190.05			
Weir Submerg	0.00	Froude # Chl	0.50
0.58			
Weir Max Depth (ft)	0.44	Specif Force (cu ft)	1455.80
1342.84			
Min El Weir Flow (ft)	237.01	Hydr Depth (ft)	1.03
0.73			
Min El Prs (ft)	235.50	W.P. Total (ft)	259.98
309.27			

Delta EG (ft)	2.68	Conv. Total (cfs)	
Delta WS (ft) 259 47	3.22	Top Width (ft)	208.52
BR Open Area (sq ft)	141.32	Frctn Loss (ft)	
BR Open Vel (ft/s)	10.02	C & E Loss (ft)	
BR Sluice Coef	0.45	Shear Total (lb/sq ft)	
BR Sel Method	Press/Weir	Power Total (lb/ft s)	

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Momentum answer is not valid if the water surface is above the low chord or Note: if there is weir flow. The momentum answer has been disregarded. The downstream water surface is below the minimum elevation for pressure Note: The sluice gate equations were flow. used for pressure flow. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water Note: surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy are based on critical depth over the weir.

BRIDGE OUTPUT Profile #500 YR

E.G. US. (ft)	237.82	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	237.71	E.G. Elev (ft)	237.82
237.82			
Q Total (cfs)	1880.00	W.S. Elev (ft)	237.71
237.50			
Q Bridge (cfs)	1506.17	Crit W.S. (ft)	233.58
234.44			
Q Weir (cfs)	373.83	Max Chl Dpth (ft)	11.64
10.66			

Weir Sta Lft (ft)	-243.37	Vel Total (ft/s)	6.31
7.51	27 22		207 72
Weir Sta Rgt (tt)	37.23	Flow Area (sq ft)	297.73
Weir Submerg	0.00	Froude # Chl	0.48
0.62			
Weir Max Depth (ft)	0.82	Specif Force (cu ft)	1622.84
1538.27			
Min El Weir Flow (ft)	237.01	Hydr Depth (ft)	1.12
0.86	225 50		216 26
$\begin{array}{c} \text{MIII EI PI'S (TL)} \\ 342 61 \end{array}$	235.50	W.P. TOLAL (TL)	210.20
Delta EG (ft)	2.42	Conv. Total (cfs)	
	2.44		
Delta WS (+t)	3.11	lop Width (+t)	264.89
BR Open Area (sq ft)	141.32	Frctn Loss (ft)	
BR Open Vel (ft/s)	10.66	C & E Loss (ft)	
BR Sluice Coef	0.46	Shear Total (lb/sq ft)	
BR Sel Method	Press/Weir	Power Total (lb/ft s)	

Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream

energy. This is not physically possible, the momentum answer has been disregarded.

Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum

answer has been disregarded.

Note: The downstream water surface is below the minimum elevation for pressure flow. The sluice gate equations were

used for pressure flow.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected

from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface is based on critical depth over the weir. The energy has been projected.

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2145

INPUT

Description: BRG DS

Station E	levatior	n Data	num=	90					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-343.96	239.18	-331.14	238.4	-313.22	237.93	-288.12	237.13	-275.37	236.7
-267.7	235.63	-256.8	234.78	-242.12	234.53	-228.68	234.12	-223.17	233.69
-201.77	233.56	-179.58	233.68	-170.41	233.64	-157.83	233.63	-152.98	233.57
-150	233.41	-147.3	233.27	-137.67	233.29	-135.3	232.91	-125.71	232.58
-120.9	232.52	-115.43	232.53	-110.3	232.55	-104.12	232.56	-94.88	232.53
-87.68	232.6	-82.54	232.64	-79.46	232.65	-77.04	232.47	-69.18	232.56
-63.01	232.5	-57.39	232.64	-50.67	232.58	-46.08	232.64	-38.34	232.94
-37.31	232.85	-37.05	232.77	-36.28	232.64	-27.88	230	-23.91	227.46
-18.08	227.97	-10.78	226.84	0	226.89	6.83	228.1	10.78	230.5
27.45	232.82	36.48	233.14	44.22	233.34	49.04	233.48	53.41	233.46
60.34	233.37	73.71	233.36	76.47	232.77	80.34	232.69	91.18	232.87
100.43	232.96	105.57	233.11	112.77	233.09	125.49	232.85	129.21	233.41
134.35	233.73	136.41	233.67	138.25	233.6	139.98	233.54	143.44	233.59
145.66	233.71	148.59	233.59	150.43	233.6	152.81	233.75	156.87	233.83
160.38	234.29	161.67	234.67	162.96	234.95	165.57	235.09	168.16	235.52
170.75	235.61	172.05	235.71	173.35	235.89	177.24	236.25	179.23	236.28
180.24	236.35	182.27	236.34	183.72	236.48	186.28	237.07	188.91	237.77
189.86	238.2	192.8	239.12	194.47	239.5	197.03	239.88	198.23	239.97

Manning's	n Values	5	num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
-343.96	.08	-27.88	.03	10.78	.08

: Left	Right	Lengths:	Left	Channel	Right	Coeff Contr.	Expan.
-27.88	10.78		12	40	58	.3	.5
ive Flow	num=	2					
Sta R	Elev	Permanent					
-24.15	236	F					
198.23	236.8	F					
	: Left -27.88 ive Flow Sta R -24.15 198.23	: Left Right -27.88 10.78 ive Flow num= Sta R Elev -24.15 236 198.23 236.8	: Left Right Lengths: -27.88 10.78 ive Flow num= 2 Sta R Elev Permanent -24.15 236 F 198.23 236.8 F	: Left Right Lengths: Left -27.88 10.78 12 ive Flow num= 2 Sta R Elev Permanent -24.15 236 F 198.23 236.8 F	: Left Right Lengths: Left Channel -27.88 10.78 12 40 ive Flow num= 2 Sta R Elev Permanent -24.15 236 F 198.23 236.8 F	: Left Right Lengths: Left Channel Right -27.88 10.78 12 40 58 ive Flow num= 2 Sta R Elev Permanent -24.15 236 F 198.23 236.8 F	: Left Right Lengths: Left Channel Right Coeff Contr. -27.88 10.78 12 40 58 .3 ive Flow num= 2 Sta R Elev Permanent -24.15 236 F 198.23 236.8 F

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2106

INPUT									
Descripti	on:								
Station E	levatior	n Data	num=	89					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-368.67	239.28	-356.61	238.52	-346	238.04	-320.92	237.18	-309.65	236.83

	226 64	200 20	225 0	202 42	224 7	200 27	224 50	205 05	224 44
-305.9	236.61	-298.38	235.9	-292.12	234./	-289.37	234.58	-285.85	234.11
-2/9.15	233.95	-266.93	233.85	-254.58	233.69	-246.5/	233.6	-229.2/	234.06
-220.73	234.25	-204.14	234.03	-197.66	233.48	-192.22	233.44	-18/.53	233.63
-179.51	233.73	-174.23	233.44	-159.79	233.36	-153.61	233.23	-149.49	233.35
-140.86	232.55	-134.31	232.51	-131.63	232.49	-124.11	232.51	-121.53	232.72
-110.33	232.87	-87.66	233.04	-84.57	232.84	-77.36	232.78	-73.85	232.49
-65	232.63	-60.88	232.58	-55.94	232.58	-50.57	232.87	-35.19	232.82
-34.82	232.82	-28.12	232.84	-27.88	229.92	-23.91	227.38	-10.78	226.76
0	226.81	6.83	228.02	10.78	230.42	10.79	232.22	14.14	232.59
20.18	232.94	26.69	233.4	32.48	233.17	33.92	232.85	38.96	232.75
41.17	233.76	44.32	234.21	55.65	233.76	61.76	232.93	68.47	232.61
71.15	233.65	73.99	233.84	80.54	233.56	82.68	233.05	89.44	232.85
100.66	232.71	106.03	232.85	108.71	233.3	115.51	233.11	120.79	233.3
124.81	233.73	129.99	233.05	134.2	232.77	142.25	232.71	151.23	232.62
160.88	232.47	167.64	232.48	171.76	232.56	183.09	233.7	188.06	233.38
196.61	234.01	198.54	234.47	209.16	234.85	213.98	236.52	218.81	236.92
224 08	237 66	230 4	238 81	232 83	239 53	239 37	240 5		230132
224:00	257.00	230.4	230.01	252.05	233.33	233.37	240.5		
Manning's	n Value	20	num=	З					
5 Sta	n Val	5 Sta	n Val	5 5+5	n Vəl				
269 67		27 00		10 70					
-308.07	.00	-27.00	.05	10.70	.00				
Bank Star	l oft	Pight	Longthe	·· loft C	hannal	Pight	Cooff	Contr	Evnon
Dalik Sta.	17 00	10 70	Lengths	150 150	120	114	CUEIT	1	د Expan
- Thofforti	2/.00	10.70	-	120	120	114		• 1	• >
Ineffecti	Ve FIOW		Dommono	<u></u>					
Sta L	Sta K	Elev	Permane	ent					
-368.67	-44.15	236	F -						
44.15	239.37	236.8	F						
	TTON								
CROSS SEC	I TON								
RIVER: NO	RIH			_					
REACH: MI	D		RS: 196	o/					
INPUT									
Descripti	on:								
Station E	levatio	n Data	num=	70					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-283.07	237.43	-271.74	237.1	-264.18	236.45	-255.05	236.32	-245.05	234.7
-228.09	233.68	-216.45	233.42	-208.48	233.81	-202.06	233.83	-185.22	233.11
-179.73	232.64	-174.45	232.74	-160.59	232.39	-154.65	232.39	-148.27	232.42
-143.01	232.43	-135.85	232.39	-131.42	232.47	-119.02	232.37	-114.35	232.69
-108.08	232.85	-100.54	232.76	-94.38	232.79	-85.69	232.67	-74.95	232.75
-67.78	232.83	-57.03	232.91	-51.27	232.83	-46.29	232.65	-34.64	232.43
-28.17	232.76	-28.16	229.1	-14.06	227.3	3.74	226.3	21.94	227
29.94	227.9	30.34	232.84	36.11	232.82	39.58	233.06	42.66	232.81
54.02	232.68	67.45	232.81	77.3	233.33	84.47	233.3	99.79	233.36
105.79	233.09	115.02	233.18	127.5	233	133.86	233.56	153.58	233.73
157.41	232.5	168.05	232.68	174.8	232.51	180.4	232.54	189.67	232.41

204.54 232.65 210.09 232.93 214 233.02 224.46 233.64 228.29 233.89 233.08 234.58 237.87 235.57 241.7 236.01 246.49 237.22 252.24 237.9 258.94 239.69 263.73 240.04 268.52 241.19 276.21 242.46 283.81 243.36 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val -283.07 .08 -28.16 .03 .08 29.94 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -28.16 29.94 120 130 125 .1 .3 2 Ineffective Flow num= Sta L Sta R Elev Permanent -283.07 -113.15 236 F F 113.15 283.81 236.8 CROSS SECTION **RIVER: NORTH** REACH: MID RS: 1840 INPUT Description: Station Elevation Data num= 75 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -435.01 237.42 -427.17 237.34 -419.59 236.36 -414.59 236.1 -412.09 235.47 -404.6 234.52 -397.1 234.21 -394.61 233.74 -385.86 233.62 -382.14 233.23 -376.03 233.28 -367.57 232.37 -353.81 232.86 -350.33 233.37 -328.63 233.36 232.82 -318.9 232.59 -308.05 232.53 -300.55 232.39 -291.62 232.45 -324.8 -285.24 232.68 -282.32 233.1 -271.28 232.29 -259.64 232.25 -250.12 232.45 -236.37 232.43 -227.9 232.39 -221.55 232.35 -212.49 232.48 -206.75 232.32 -197.1 232.52 -192.99 233.39 -177.28 233.45 -168.62 233.49 -162.73 233.49 -151.76 233.51 -143.7 233.35 -137.66 233.29 -131.87 232.94 -124.9 232.44 -118.18 232.52 -108.89 233.24 -102.95 233.2 -92.34 232.92 -86.56 232.45 -79.23 232.68 -69.07 232.68 -59.54 232.84 -50.81 232.56 -39.1 232.62 -31.35 232.57 233 -21.65 228.5 -14.55 -4.35 -23.1 226.8 226.7 5.05 227.4 16.65 229.5 18.15 232.6 27.98 233.21 35.76 233.32 67.54 232.96 53.27 233.37 60.5 232.86 70.21 233.54 78.21 233.36 94.12 232.94 107.74 232.72 119.53 233.09 135.32 233.34 150 233.97 157.14 234.77 165.49 237 171.76 238.39 178.01 240.24 182.29 240.92 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val .08 -21.65 .03 16.65 .08 -435.01 Bank Sta: Left Right Lengths: Left Channel Coeff Contr. Right Expan. 16.65 -21.65 295 340 235 .1 .3 2 Ineffective Flow num= Sta L Sta R Elev Permanent -435.01 -175.65 236 F

CROSS SECTION

RIVER:	NORTH		
REACH:	MID	RS	: 1545

INPUT

Descripti	on:								
Station E	levatior	n Data	num=	65					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-480.73	237.79	-466.57	236.33	-462.82	234.54	-447.81	234.36	-431.38	233.55
-409.46	233.27	-388.5	233.11	-370.86	232.95	-343.2	232.97	-325.64	232.41
-311.62	232.36	-295.8	232.29	-273.64	232.2	-248.51	232.53	-243.41	232.27
-232.05	232.35	-216.44	232.45	-201.73	232.68	-190.36	232.67	-182.25	232.57
-162.4	232.67	-132.62	232.57	-123.42	232.5	-85.97	233.02	-69.1	233.43
-55.42	233.75	-26.16	233.77	-21.65	227.91	-14.55	226.21	-4.35	226.11
5.05	226.81	16.65	228.91	18.05	232.67	18.95	232.77	20.43	233.31
41.64	233.03	57.37	232.35	66.05	232.25	85.45	232.73	104.51	232.93
138.05	233.2	162.05	232.43	186.04	232.4	215.49	232.34	228.79	232.38
239.13	232.37	259.3	232.55	285.83	232.28	323.72	232.8	340.54	232.8
354.88	232.82	376.77	232.86	400.77	233.06	408.92	232.93	424.77	233.07
442.46	234.51	450.83	235.77	467.72	236.88	500.68	237.23	529.61	237.25
534.61	238.37	552.4	238.72	555.36	239.27	583.92	241.84	594.56	241.83
Manning's	n Value	25	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-480.73	.08	-21.65	.03	16.65	.08				
Bank Sta.	l oft	Right	length	s. left (hannel	Right	Coeff	Contr	Fynan
-	21.65	16.65	Lengen	205	250	285	cocri	.1	.3
Ineffecti	ve Flow	num=	-	2	250	205		•-	
Sta L	Sta R	Elev	Permane	- nt					
-480.73	-323.15	236	F						
323.15	594.56	236.8	F						
CROSS SEC	TTON								
	TION								
RIVER: NU	יגוח ס		DC • 100	רב					
REACH: MI	D		KS: 125	30					
INPUT									
Descripti	on:								
Station E	levatior	n Data	num=	73					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-403.24	238.81	-394.41	238.51	-388.15	237.61	-381.89	234.7	-376.88	234.48
-374.37	234.03	-364.28	233.38	-358.94	233.43	-346.74	232.37	-339.31	232.43
-330.88	232.35	-319.27	232.08	-312.17	232.85	-301.96	232.88	-295.47	233.14

-274.85 -226.65 -189.99 -151.44 -94.36 -48.57 -14.55 29.39 84.38 133.55 186.22 234.59	233.11 232.31 232.66 233.27 232.18 232.27 225.71 232.55 232.69 232.74 238.49 243.13	-272.93 -219.97 -185.25 -137.66 -87.7 -40.69 -4.35 43.58 90.51 145.11 196.33 243.65	232.7 232.81 232.51 232.97 232.32 232.21 225.61 232.42 232.4 233.19 240.78 243.09	-261.39 -212.39 -178.99 -121.38 -82.38 -35.48 5.05 49.79 98.7 156.54 210.45 255.61	232.42 233.09 232.54 232.6 232.3 232.38 226.31 233 232.09 233.35 242.19 243.24	-248.92 -197.78 -165.21 -114.57 -61.66 -22.95 16.65 55.11 113.93 170.45 219.87	232.44 233.18 232.45 232.37 232.5 232.21 228.41 233.08 232.18 234.27 242.61	-237.14 -195.27 -161.46 -107.72 -53.99 -21.65 17.86 67.61 123.61 184.12 227.23	232.38 232.85 232.91 232.38 232.55 227.41 232.19 232.91 232.28 237.66 242.67
Manning's Sta -403.24	n Value n Val .08	es Sta -21.65	num= n Val .03	3 Sta 16.65	n Val .08				
Bank Sta: -	Left 21.65	Right 16.65	Lengths	s: Left C 295	hannel 295	Right 295	Coeff	F Contr. .1	Expan. .3
CROSS SEC	TION								
RIVER: NO REACH: MI	RTH D		RS: 100	90					
INPUT									
Descripti	on: DS	IMIT							
Station E	levatio	n Data	num=	84					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-177.41	241.46	-169.62	241.51	-163.4	241.44	-159.61	241.06	-152.07	240.44
-150.81	240.24	-147.03	240	-144.52	239.59	-135.7	238.75	-128.16	237.51
-121.86	235.95	-119.58	235.47	-113.04	234.52	-110.53	234.42	-105.69	233.81
-104.//	233.5/	-101.1/	233.28	-98.3	233.45	-93./1	233.07	-91.8/	233.08
-89.1	233.38	-00.34	255.26	-01./3	252.64	-/8.96 61 74	252.0/	-/3.43	232.51
-09.74	252.57	-07.19	222.72	-04.07	222.21	-01.04	222.72	-59.04	252.50
- 52.0	252.5	-40./	222.05	-42.22	221.9/		252.00	-22.0	252.41
-21.02	202.44	-22.59	252,49	-21.05	220.02	-14.55	223.12	-4.55	223.02
53 77	223.72	56 53	227.02	62 11	222.91	43.94 67 50	233.14	49.10	232.90
77 73	232.05	79 58	232.70	82 32	232.00	83 78	232.50	86.03	232.31
89 72	232.10	1 20	232.30	02.JZ 05 /1	222.4	02.70	232.02	106 31	233.14
112 22	232.27	۰.4 117 <i>1</i> 2	272.14	122 52	232.42 23 <u>4</u> <u>1</u> 1	120 S	232.32	138 63	236 68
140 65	236.93	144 68	237 85	152 74	237.41	157 01	232.42	158 15	230.00
160.79	239.29	168.57	240.27	170.86	240.7	172.88	240.88	175.09	241.39
181.6	241.8	182.95	241.88	188.12	241.93	193.89	242.12	198.54	242.14
206.35	242.5	208.13	242.52	212.87	242.28	217.74	242.33		
Manning's	n Valu	es	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				

-177.41	.08	-21.65	.03	16.65	.08

Bank Sta: Left	Right	Lengths:	Left Cha	nnel	Right	Coeff Contr.	Expan.
-21.65	16.65		0	0	0	.1	.3

SUMMARY OF MANNING'S N VALUES

River:NORTH

Reach	River Sta.	n1	n2	n3
MID	2520	.08	.03	.08
MID	2348	.08	.03	.08
MID	2265	.08	.03	.08
MID	2231	.08	.03	.08
MID	2192	Bridge		
MID	2145	.08	.03	.08
MID	2106	.08	.03	.08
MID	1967	.08	.03	.08
MID	1840	.08	.03	.08
MID	1545	.08	.03	.08
MID	1295	.08	.03	.08
MID	1000	.08	.03	.08

SUMMARY OF REACH LENGTHS

River: NORTH

	Reach	River Sta.	Left	Channel	Right
MID		2520	185	172	163
MID		2348	80	82	82
MID		2265	21	34	43
MID		2231	86	86	86
MID		2192	Bridge		
MID		2145	12	40	58
MID		2106	158	138	114
MID		1967	130	125	120
MID		1840	235	295	340
MID		1545	205	250	285
MID		1295	295	295	295
MID		1000	0	0	0

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: NORTH

Reach	River	Sta.	Contr.	Expan.
MID	2520		.1	.3
MID	2348		.1	.3
MID	2265		.3	.5
MID	2231		.3	.5
MID	2192	Bri	idge	
MID	2145		.3	.5
MID	2106		.1	.3
MID	1967		.1	.3
MID	1840		.1	.3
MID	1545		.1	.3
MID	1295		.1	.3
MID	1000		.1	.3

Profile Output Table - Standard Table 1

Reach	River Sta	Profile	e Q Total	Min Ch El	W.S. Elev	Crit W.S.
E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	
			(cfs)	(ft)	(ft)	(ft)
(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		
мтр	2520		215 00	226 70	221 14	228 65
MID 221 21	2520		313.00	220.70	251.14	228.05
231.21	0.000393	2.25	142.93	45.62	222 40	220.24
MID	2520	5 YR	520.00	226.70	232.48	229.24
232.59	0.000363	2.68	207.74	52.48	0.21	
MID	2520	10 YR	690.00	226.70	233.49	229.66
233.61	0.000317	2.83	395.79	389.56	0.21	
MID	2520	25 YR	920.00	226.70	234.81	230.14
234.87	0.000175	2.40	1000.76	494.89	0.16	
MID	2520	50 YR	1100.00	226.70	236.57	230.48
236.59	0.000065	1.69	1908.04	577.21	0.10	
MID	2520	100 YR	1330.00	226.70	237.10	230.88
237.13	0.000068	1.80	2190.79	594.18	0.10	
MID	2520	200 YR	1540.00	226.70	237.46	231.23
237.48	0.000074	1.92	2380.56	612.93	0.11	
MID	2520	500 YR	1880.00	226.70	237.83	231.76
237.87	0.000088	2.16	2718.37	619.82	0.12	
МТП	23/18	2 VR	315 00	226 40	230 99	228 01
221 12	0 000706	2 11	100 33	220.40	230.39 Q 29	220.91
271.12	0.000/00	2.94	T02.22	54.2/	0.20	

MID	2348	5 YR	520.00	226.40	232.31	229.61
232.50	0.000639	3.48	156.54	36.60	0.28	
MID	2348	10 YR	690.00	226.40	233.34	230.04
233.53	0.000524	3.59	318.05	394.91	0.26	
MID	2348	25 YR	920.00	226.40	234.72	230.57
234.83	0.000294	3.10	702.94	577.45	0.20	
MID	2348	50 YR	1100.00	226.40	236.53	230.94
236.58	0.000120	2.30	1233.26	605.35	0.14	
MID	2348	100 YR	1330.00	226.40	237.06	231.40
237.11	0.000130	2.49	1426.21	618.94	0.14	
MID	2348	200 YR	1540.00	226.40	237.40	231.80
237.46	0.000145	2.69	1537.47	629.45	0.15	
MID	2348	500 YR	1880.00	226.40	237.82	232.40
237.85	0.000085	2.12	2989.33	654.73	0.12	
MID	2265	2 YR	315.00	226.15	230.94	228.66
231.06	0.000583	2.78	114.26	32.28	0.26	
MID	2265	5 YR	520.00	226.15	232.27	229.35
232.45	0.000561	3.35	157.85	33.26	0.27	
MID	2265	10 YR	690.00	226.15	233.29	229.78
233.49	0.000512	3.63	239.94	316.34	0.26	
MID	2265	25 YR	920.00	226.15	234.61	230.31
234.80	0.000389	3.61	411.07	564.54	0.24	
MID	2265	50 YR	1100.00	226.15	236.44	230.69
236.56	0.000210	3.08	646.44	602.60	0.18	
MID	2265	100 YR	1330.00	226.15	237.02	231.14
237.10	0.000160	2.80	1180.25	607.66	0.16	
MID	2265	200 YR	1540.00	226.15	237.36	231.54
237.45	0.000180	3.04	1272.95	613.40	0.17	
MID	2265	500 YR	1880.00	226.15	237.72	232.15
237.83	0.000225	3.48	1372.42	619.44	0.19	
МТП	2231	2 VR	315 00	226 07	230 95	228 55
231 03	0 000108	2 77	141 15	43 27	0 21	220.99
MTD	2231	5 VR	520 00	226 07	232 29	229 20
232 /0	0 000371	2 69	201 1/	16 08	0 22	223.20
252.40 MTD	2231	10 VR	690 00	226 07	233 31	229 58
233 11	0 000330	2 03	250.00	220.07	255.51 0 21	227.50
255.44 MTD	2221	2.95 25 VP	239.23	277.72	224 62	220 03
DTU 224 22	2231	2,5 11	220.00	220.07	204.02	230.03
204.//	222000.0		1100 00	226.07	226 42	220.25
	2231		1100.00	220.07	230.42	250.55
230.33	2221	2.92 100 VD	449.19	2/2.01	0.17	220 74
	2231	100 YK	1124 20	220.07	237.02	230./4
237.09	151000.0	2.52	154.20	222.22	0.14	221 00
	2231	200 YK	1210.00	220.0/	23/.30	231.08
237.44	0.000150	2./6	1000 00	401.45	0.16	224 50
	2231	500 YR	1880.00	226.0/	23/./1	231.59
237.82	0.000192	3.20	1314.25	434.42	0.18	

MID	2145	2 YR	315.00	226.84	230.24	228.78
230.41	0.001208	3.32	94.79	38.97	0.35	
MID	2145	5 YR	520.00	226.84	231.14	229.37
231.41	0.001282	4.11	127.94	46.92	0.38	
MID	2145	10 YR	690.00	226.84	231.82	229.79
232.14	0.001266	4.58	156.35	53.93	0.39	
MID	2145	25 YR	920.00	226.84	232.61	230.29
233.01	0.001263	5.12	193.35	127.34	0.40	
MID	2145	50 YR	1100.00	226.84	233.19	230.66
233.64	0.001237	5.44	221.59	228.84	0.40	
MID	2145	100 YR	1330.00	226.84	233.78	231.10
234.31	0.001281	5.92	250.07	378.77	0.42	
MID	2145	200 YR	1540.00	226.84	234.13	231.48
234.76	0.001421	6.46	266.95	388.23	0.44	
MID	2145	500 YR	1880.00	226.84	234.60	232.06
235.40	0.001670	7.33	289.45	407.49	0.49	
MID	2106	2 YR	315.00	226.76	230.21	228.53
230.35	0.000932	2.93	107.45	38.34	0.31	
MID	2106	5 YR	520.00	226.76	231.13	229.11
231.33	0.000998	3.64	142.82	38.76	0.33	
MID	2106	10 YR	690.00	226.76	231.81	229.53
232.07	0.000999	4.08	169.26	38.82	0.34	
MID	2106	25 YR	920.00	226.76	232.60	230.02
232.93	0.001021	4.61	200.62	95.16	0.36	
MID	2106	50 YR	1100.00	226.76	233.19	230.35
233.56	0.001012	4.93	236.44	268.93	0.36	
MID	2106	100 YR	1330.00	226.76	233.78	230.77
234.22	0.001039	5.33	286.16	400.83	0.37	
MID	2106	200 YR	1540.00	226.76	234.14	231.10
234.65	0.001139	5.79	317.20	467.82	0.39	
MID	2106	500 YR	1880.00	226.76	234.62	231.63
235.26	0.001308	6.50	359.93	493.25	0.43	
MID	1967	2 YR	315.00	226.30	230.20	228.02
230.25	0.000302	1.80	175.69	58.29	0.18	
MID	1967	5 YR	520.00	226.30	231.14	228.47
231.22	0.000334	2.26	230.41	58.37	0.20	
MID	1967	10 YR	690.00	226.30	231.84	228.79
231.94	0.000342	2.55	271.43	58.43	0.21	
MID	1967	25 YR	920.00	226.30	232.66	229.16
232.79	0.000354	2.89	321.16	178.76	0.22	

Bridge

MID

2192

MID	1967	50 YR	1100.00	226.30	233.27	229.42
233.42	0.000347	3.0/	421.47	357.18	0.22	220 72
MID	1967	100 YK	1330.00	226.30	233.90	229.73
234.06	0.000343	3.26	562.61	460.12	0.22	220.00
MID	1967	200 YR	1540.00	226.30	234.29	229.98
234.4/	0.000362	3.48	651.12	469.34	0.23	
MID	1967	500 YR	1880.00	226.30	234.83	230.37
235.04	0.000395	3.81	773.54	480.17	0.24	
мтр	1040			226 70	220.00	220 60
MID	1840	2 YR	315.00	226.70	230.00	228.69
230.17	0.001322	3.29	96.10	39.03	0.3/	
MID	1840	5 YR	520.00	226.70	230.88	229.28
231.13	0.001323	4.02	130.53	39.73	0.39	222 67
MID	1840	10 YR	690.00	226.70	231.54	229.67
231.85	0.001280	4.46	157.04	40.27	0.39	
MID	1840	25 YR	920.00	226.70	232.30	230.12
232.69	0.001277	5.00	187.91	55.12	0.40	
MID	1840	50 YR	1100.00	226.70	232.88	230.46
233.31	0.001239	5.31	232.71	289.43	0.40	
MID	1840	100 YR	1330.00	226.70	233.50	230.86
233.96	0.001157	5.52	369.73	518.66	0.40	
MID	1840	200 YR	1540.00	226.70	233.91	231.20
234.37	0.001123	5.68	499.49	544.12	0.40	
MID	1840	500 YR	1880.00	226.70	234.50	231.72
234.94	0.001038	5.80	694.24	559.00	0.39	
		0.1/5		004.44		
MID	1545	2 YR	390.00	226.11	229.42	228.32
229.68	0.001996	4.06	96.99	39.66	0.45	
MID	1545	5 YR	630.00	226.11	230.26	228.95
230.63	0.001990	4.91	130.56	40.61	0.47	
MID	1545	10 YR	840.00	226.11	230.89	229.38
231.36	0.001986	5.50	156.38	41.33	0.49	
MID	1545	25 YR	1110.00	226.11	231.61	229.88
232.20	0.001981	6.14	186.57	42.16	0.50	
MID	1545	50 YR	1330.00	226.11	232.15	230.26
232.82	0.001976	6.59	209.45	42.77	0.51	
MID	1545	100 YR	1600.00	226.11	232.86	230.70
233.52	0.001703	6.66	413.84	569.15	0.48	
MID	1545	200 YR	1850.00	226.11	233.61	231.09
234.03	0.001103	5.80	839.83	828.47	0.40	
MID	1545	500 YR	2230.00	226.11	234.36	231.63
234.64	0.000766	5.19	1318.01	888.27	0.34	
MTD	1205	2.10	200.00	225 64		
MID	1295	2 YR	390.00	225.61	228.92	
229.18	0.002000	4.06	96.40	38.87	0.45	
MID						
	1295	5 YR	630.00	225.61	229.76	

MID	1295	10 YR	840.00	225.61	230.39	
230.86	0.002001	5.52	153.95	39.74	0.49	
MID	1295	25 YR	1110.00	225.61	231.11	
231.70	0.002003	6.17	182.73	40.16	0.50	
MID	1295	50 YR	1330.00	225.61	231.64	
232.33	0.002003	6.63	204.36	40.48	0.51	
MID	1295	100 YR	1600.00	225.61	232.26	
233.05	0.002004	7.14	233.10	98.12	0.52	
MID	1295	200 YR	1850.00	225.61	232.87	230.57
233.65	0.001782	7.20	401.12	384.93	0.50	
MID	1295	500 YR	2230.00	225.61	233.91	231.13
234.39	0.001090	6.22	915.66	537.47	0.40	
MID	1000	2 YR	390.00	225.02	228.33	227.23
228.59	0.002004	4.06	96.23	38.80	0.45	
MID	1000	5 YR	630.00	225.02	229.17	227.85
229.54	0.002000	4.92	128.95	39.40	0.47	
MID	1000	10 YR	840.00	225.02	229.80	228.29
230.27	0.002002	5.52	153.84	39.86	0.49	
MID	1000	25 YR	1110.00	225.02	230.52	228.78
231.11	0.002003	6.17	182.72	40.38	0.50	
MID	1000	50 YR	1330.00	225.02	231.05	229.16
231.74	0.002002	6.63	204.51	40.76	0.51	
MID	1000	100 YR	1600.00	225.02	231.67	229.61
232.45	0.002002	7.13	229.57	41.21	0.52	
MID	1000	200 YR	1850.00	225.02	232.19	229.98
233.08	0.002002	7.56	253.50	56.91	0.53	
MID	1000	500 YR	2230.00	225.02	232.90	230.55
233.91	0.002002	8.11	326.78	151.63	0.54	

Profile Output Table - Six XS Bridge

Read	ch	Rive	er Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn
Loss	C & E	Loss	Top Width	Q Left	Q Channel (ft)	Q Right (ft)	Vel Chnl (ft)	
(ft)		(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	
MID		2265	i	2 YR	231.06	230.94	228.66	
0.02		0.02	32.28	0.22	314.77	0.01	2.78	
MID		2265		5 YR	232.45	232.27	229.35	
0.02		0.03	33.26	1.08	518.89	0.04	3.35	
MID		2265	i i	10 YR	233.49	233.29	229.78	
0.01		0.03	316.34	5.43	675.27	9.30	3.63	
MID		2265	i i	25 YR	234.80	234.61	230.31	
0.01		0.02	564.54	42.46	821.04	56.49	3.61	

MID	2265		50 YR	236.56	236.44	230.69
0.01	0.00	602.60	99.62	874.43	125.95	3.08
MID	2265		100 YR	237.10	237.02	231.14
0.00	0.00	607.66	345.74	844.76	139.50	2.80
MID	2265		200 YR	237.45	237.36	231.54
0.01	0.00	613.40	421.74	950.20	168.06	3.04
MID	2265		500 YR	237.83	237.72	232.15
0.01	0.00	619.44	540.48	1126.88	212.64	3.48
MID	2231		2 YR	231.03	230.95	228.55
0.02	0.06	43.27	0.26	314.24	0.50	2.27
MID	2231		5 YR	232.40	232.29	229.20
0.02	0.11	46.08	1.14	516.45	2.41	2.69
MID	2231		10 YR	233.44	233.31	229.58
0.02	0.15	277.72	4.50	679.89	5.61	2.93
MID	2231		25 YR	234.77	234.62	230.03
0.02	0.21	331.40	15.31	889.55	15.14	3.13
MID	2231		50 YR	236.55	236.42	230.35
		375.81	31.05	1040.97	27.98	2.92
MTD	2231	0,0,00	100 YR	237.09	237.02	230.74
1120	2292	391,93	344.02	957.65	28.33	2.52
MTD	2231	552155	200 YR	237.44	237.36	231.08
1120	2292	401.45	418.92	1087.35	33.73	2.76
MTD	2231	101.15	500 VR	237 82	237 71	231 59
HID	2291	434 42	532 23	1305 41	42 36	3 20
		+3+1+2	552.25	1909.41	42.50	5.20
MTD	2192	BR U	2 YR	230.95	230.66	228.62
0.10	0.12	17.33		315.00	250100	4.31
MTD	2192	BR II	5 VR	232.27	231.78	229.48
0.14	0.20	17.25	5 11	520.00	232170	5.62
MTD	2192	BR II	10 YR	233.27	232.62	230.11
0.16	0.27	17,19	10 11	690.00	252.02	6.45
MTD	2192	BR II	25 VR	234 55	233 71	230 88
0 19	0 39	17 12	25 11	920 00	233.71	7 32
мтп	2192	BR II	50 VR	236 55	235 50	231 //
MID	2172	DI O	JO I I	1100 00	255.50	7 0/
мтр	2192	BR II	100 VR	237 00	237 02	7.04
MID	2192	66 42	5 50 TK	1222 /1	257.02	252.11 9 /7
мтр	2102	80.42 BR II	200 VP	1323.41	227 26	222 60
MID	2192		101 60	237.44	257.50	252.05
мтр	2102	200.32		1410.00	227 71	9.07 222 EQ
MID	2192			25/.02	25/./1	255.50
		204.09	504.04	1312.48	2./0	2.31
мтр	2102	ם ממ	2 V₽	220 22	220 06	220 17
	0 JE 7137	סת D 17 סר		230.13 21E AA	230.00	223.4/ 6 E0
0.07 MTD	0.23	T/.2/		221 04	220 20	ور.ں ۱۹ مور
עבויו				,		
0 00	2192		אז כ	231.94	250.78	250.54

MID	2192	BR D	10 YR	232.84	231.30	230.97
0.09	0.61	17.28		690.00		9.96
MID	2192	BR D	25 YR	233.97	231.84	231.73
0.09	0.86	17.25		920.00		11.71
MID	2192	BR D	50 YR	234.81	233.19	232.30
		17.16		1100.00		10.79
MID	2192	BRD	100 YR	237.08	237.02	232.97
		66.42	5.58	1323.41		9.36
МТО	2192		200 VR	237 39	237 29	233 56
	2172	259 47	121 63	1416 68	237.23	10 02
МТО	2192	BR D	500 VR	237 82	237 50	234 44
	2172	292 21	364 64	1512 48	2 78	10 52
		272.21	504.04	1912.40	2.70	10.92
MID	2145		2 YR	230.41	230.24	228.78
0.04	0.02	38.97		315.00		3.32
MID	2145		5 YR	231.41	231.14	229.37
0.05	0.03	46.92		519.54	0.46	4.11
MID	2145		10 YR	232.14	231.82	229.79
0.04	0.03	53.93		686.89	3.12	4.58
MID	2145		25 YR	233.01	232.61	230.29
0.05	0.04	127.34		908.49	11.51	5.12
MID	2145		50 YR	233.64	233.19	230.66
0.04	0.04	228.84		1077.69	22.31	5.44
MID	2145		100 YR	234.31	233.78	231.10
0.05	0.05	378.77		1293.28	36.72	5.92
MID	2145		200 YR	234.76	234.13	231.48
0.05	0.06	388.23		1491.27	48.73	6.46
MTD	2145		500 YR	235.40	234.60	232.06
0.06	0.09	407.49	200	1811.14	68.87	7.33
мтр	2106		2 VR	230 35	230 21	228 53
0 07	0 03	38 34	2 11	315 00	250.21	2 93
MTD	2106	50.54	5 VP	221 22	221 12	2.55
0 07	0 01	38 76	0 00	520.00	231.13	2 61
MTD	0.04	58.70	10 VP	220.00	0.00	2.04
	2100	<u>רס סר</u>		252.07	251.01	4 00
80.0	0.05	30.02		009.90	0.00	4.08
	2100	05 16		232.93	232.60	230.02
0.08	0.06	95.16	0.04	919.86	0.10	4.61
MID	2106		50 YR	233.56	233.19	230.35
0.08	0.0/	268.93	1.69	1095.94	2.38	4.93
MID	2106		100 YR	234.22	233.78	230.77
0.08	0.08	400.83	8.39	1309.18	12.43	5.33
MID	2106		200 YR	234.65	234.14	231.10
0.08	0.10	467.82	14.81	1501.99	23.20	5.79
MID	2106		500 YR	235.26	234.62	231.63
0.09	0.13	493.25	26.62	1807.73	45.65	6.50

HEC-RAS HEC-RAS 6.1.0 September 2021 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		ХΧ	XX	X	X	XXXX
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	Х	Х			Х	Х	Х	Х	Х
XXXX	XXX	XXXX	Х		XXX	ХХ	XX	ХХХ	XXX	XXXX
Х	Х	Х	Х			Х	Х	Х	Х	Х
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	XXXXXX	ХХ	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA Project Title: Replacement of Bridge No. 141/127 Project File : 141-127 Route 152.prj Run Date and Time: 10/26/2022 12:20:38 PM

Project in English units

Project Description: NH Route 152 over North River - Final Hydraulic Design Report

PLAN DATA

Plan Title: Proposed Replacement

Plan File : t:\Projects\New
Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS
Modeling\HEC-RAS\141-127 Route 152.p02

Geometry Title: Proposed Replacement Geometry File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.g02

Flow Title : StreamStats Design Flow File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.f01

Plan Description:

NAVD88 Daturm Plan Summary Information: Number of: Cross Sections = 11 Multiple Openings = 0 Inline Structures = Culverts = 0 0 = 1 Bridges Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.33 = 0.001 Flow tolerance factor Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method:Average ConveyanceComputational Flow Regime:Subcritical Flow

FLOW DATA

Flow Title: StreamStats Design
Flow File : t:\Projects\New
Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS
Modeling\HEC-RAS\141-127 Route 152.f01

Flow Data (cfs)

Proposed Conditions

River	Reach	RS	2 YR	!	5 YR
10 YR	25 YR	50 YR	100 YR	200 YR	500
YR					
NORTH	MID	2520	315		520
690	920	1100	1330	1540	
1880					
NORTH	MID	1545	390		630
840	1110	1330	1600	1850	
2230					
North River	RT 152	1971			

Boundary Conditions

River	Reach	Profile	Upstream
Downstream			
NORTH	MID	2 YR	Critical
Normal $S = 0.002$			
NORTH	MID	5 YR	Critical
Normal $S = 0.002$			
NORTH	MID	10 YR	Critical
Normal $S = 0.002$			
NORTH	MID	25 YR	Critical
Normal $S = 0.002$			
NORTH	MID	50 YR	Critical
Normal $S = 0.002$			
NORTH	MID	100 YR	Critical
Normal $S = 0.002$			
NORTH	MID	200 YR	Critical
Normal $S = 0.002$			
NORTH	MID	500 YR	Critical
Normal $S = 0.002$			

GEOMETRY DATA

Geometry Title: Proposed Replacement Geometry File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.g02

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2520

INPUT Description: US LIMIT Station Elevation Data 75 num= Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -298.56 242.06 -278.59 240.38 -264.7 239.67 -255.04 239.15 -243.35 238.18 -225.46 237.92 -218.81 237.25 -208.2 236.68 -199.53 235.96 -192.1 235.02 -187 234.78 -168.2 233.23 -164.44 233.23 -153.38 232.62 -146.37 232.53

-138.12 232.67 -133.06 232.91 -119.47 232.93 -107.01 233.42 -86.52 233.18 -77.55 232.89 -62.5 232.77 -57.16 233.2 -51.19 233.12 -41.29 232.91 -31.1 232.93 -30 232.77 -28.84 232.45 -27.47 232.27 -24.31 231.87 -22.76 231.1 230.2 -6.76 -17.36 226.7 .04 226.8 2.04 226.8 10.44 227 17.64 227.9 21.14 229 21.74 229.7 23.34 231.9 23.7 233.01 35.74 233.39 45.93 233.12 56.19 233.23 63.26 233.55 76.91 233.49 85.59 233.15 93.26 233.03 99.54 232.95 115.89 233.12 121.84 233.32 136.01 233.45 139.96 233.12 145.63 233.25 157.93 233.04 167.15 233.16 181.28 233.04 187.6 232.88 197.74 232.93 204.54 233.27 215.24 233.05 221.6 233.24 230.6 233.25 236.62 233.79 254.39 233.6 266.85 233.72 284.98 234.2 296.98 234.35 318.36 235.29 329.67 235.44 340.49 358.58 235.76 378.36 237.12 391.61 235.17 237.4 413.33 240 3 Manning's n Values num= Sta n Val Sta n Val Sta n Val -298.56 .08 -17.36 .08 .03 21.74 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -17.36 21.74 185 172 163 .1 .3 Ineffective Flow num= 1 Sta R Elev Permanent Sta L 318.5 413.33 238.6 F CROSS SECTION RIVER: NORTH REACH: MID RS: 2348 INPUT Description: Station Elevation Data 74 num= Elev Elev Sta Elev Elev Elev Sta Sta Sta Sta -212.51 240.46 -209.38 239.92 -207.42 239.76 -202.36 239.04 -198.95 238.81 -190.48 238.06 -187.65 238.02 -175.42 237.3 -168.06 236.61 -157.91 235.35 234.74 -143.95 234.45 -139.87 234.44 -134.47 233.96 -126.19 -154.1 233.71 233.26 -108.29 233.41 -118.58 -99.55 233.3 -95.74 233.05 -90.15 232.88 -80.52 232.88 232.8 -84.75 232.89 -76.04 -72.6 232.47 -66.56 232.44 -63.13 232.75 -59.89 232.78 -53.4 232.93 -50.16 232.94 -44.75 232.94 -32.3 232.92 -38.27 233.04 -27.46 232.7 -20.98 232.59 -20.28 229.6 -16.28 228.8 -7.88 226.8 0 226.43 .72 226.4 8.12 227.8 10.82 229.4 15.12 231.8 15.91 232.52 21.15 232.85 36.24 233 52.31 233.01 60.38 232.59 74.36 232.66 232.68 92.07 98.47 232.7 104.96 232.65 112.46 232.66 132.67 232.41 144.54 232.56 176.29 232.48 186.14 232.56 232.51 210.23 232.65 245.44 232.58 198.63 254.02 233.59 264.41 233.78 271.54 233.76 298.91 233.94 312.48 233.95 318.62 233.78 337.04 233.64 346.64 233.47 355.84 233.34 378.27 233.21 399.64 233.49 452.8 237.43 421.28 234.34 438.9 236.65 478.3 238

Manning's n Values

3

num=

Sta n Val Sta n Val n Val Sta -20.28 -212.51 .08 .03 .08 10.82 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -20.2810.82 82 80 82 .1 .3 Ineffective Flow num= 2 Sta L Sta R Elev Permanent -212.51 -159.5 237.3 F F 478.3 238.6 146.5 CROSS SECTION **RIVER: NORTH** REACH: MID RS: 2265 INPUT Description: BRG APPROACH Station Elevation Data num= 72 Sta Elev Elev Sta Elev Sta Elev Sta Elev Sta -264.42 240.04 -255.02 239.82 -249.54 239.4 -238.56 238.9 -226.67 238.48 236.94 -199.16 236.14 -180.55 234.95 -175.95 -224.01 238.2 -204.21 234.83 -154.84 233.52 -140.56 233.76 -132.1 232.91 -119.86 232.72 -111.63 232.57 232.99 232.99 -59.88 232.92 -50.94 233.05 -100.32 -81.78 -35.51 232.84 232.69 -20.28 229.35 -16.28 228.55 -7.88 226.55 -22.49 0 226.18 .72 226.15 8.12 227.55 10.82 229.15 11.06 232.48 30.8 232.45 232.64 46.88 49.45 233.22 58.44 233.04 76.49 233.36 79 232.5 90.56 232.92 97.26 232.97 87.6 232.5 109.83 233.38 113.87 232.86 121.39 232.51 129.1 233.3 130.38 233.91 161.21 234.01 174.11 233.28 184.49 233.28 189.68 232.8 195.87 232.82 204.22 233.04 221.63 233.31 235.35 233.44 241.9 233.71 252.81 233.91 259.28 234.22 263.8 234.42 234.15 280.11 234.08 284.48 233.55 290.9 233.38 274.65 300.85 233.5 311.23 233.32 320.09 233.25 326.42 233.91 339.09 233.89 342.87 233.77 355.44 233.42 369.21 233.43 382.73 233.14 389.71 234.01 394.74 235.3 401.1 236.05 403.63 238.21 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val -264.42 .08 -20.28 .08 .03 10.82 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -20.28 10.82 21 34 43 .3 .5 2 Ineffective Flow num= Sta L Sta R Elev Permanent -77.5 F -264.42 237.3 64.5 403.63 238.6 F

CROSS SECTION

RIVER:	NORTH		
REACH:	MID	RS:	2231

INPUT Description: BRG US Station Elevation Data num=

Sta	Elev								
-283.71	239.35	-279.8	239.34	-264.32	239.01	-254.45	238.64	-248.85	238.15
-246.12	238.08	-241.08	237.61	-234.29	237.6	-230.84	237.41	-221.55	237.2
-218.59	236.88	-210.36	236.63	-203.07	236.15	-198.73	236.03	-195.83	235.77
-182	234.89	-176.85	234.36	-174.28	234.3	-169.97	233.91	-158.59	233.58
-151.35	233.37	-142.12	232.96	-134.8	232.86	-125.48	233.11	-122.82	232.69
-118.24	232.47	-112.53	232.83	-107.9	232.62	-100.95	232.61	-96.52	233
-91.94	232.99	-84.1	232.73	-81.65	232.51	-75.91	232.5	-64.92	232.55
-61.34	232.68	-53.35	232.77	-46.86	232.74	-39.19	232.42	-31.34	232.52
-23.07	232.51	-21	232.58	-18.56	229.22	-8.46	226.88	-5.98	226.37
2.36	226.07	11.63	227.93	21.25	229.33	25.56	232.49	26.42	232.45
31.57	233.03	39.01	233.03	52.15	233.26	64.87	233.11	67.97	232.67
79.17	232.67	81.74	232.76	86.59	233	90.78	233.09	95.88	233.08
99.76	233.02	104.18	232.78	110.05	232.5	115.19	232.77	118.66	232.78
126.94	233.24	133.3	233.76	136.25	233.72	142.46	234	145.56	234.35
149.7	234.47	155.91	234.87	158.94	235.31	165.22	235.99	171.42	236.78
174.38	237.84	176.6	237.73	194.43	237.63	220	238.16		

79

Manning's	n Value	S	num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
-283.71	.08	-18.56	.03	21.25	.08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -18.56 21.25 86 86 86 .5 .3 2 Ineffective Flow num= Sta L Sta R Elev Permanent -283.71 -43.5 237.3 F F 30.5 220 238.6

22

33

2.6

=

BRIDGE

RIVER: NORTH REACH: MID RS: 2192

INPUT

num=

Description: Proposed Replacement 30' Clear Span

Distance from Upstream XS =

Deck/Roadway Width

Weir Coefficient = Upstream Deck/Roadway Coordinates

> 14 Sta Hi Cord Lo Cord

Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord

-340	237.4	-290	237.3		-240	237.3	
-190	237.6	-140	238.3		-90	239	
-40	239.2	-21.5	239.1	236.25	8.5	239.1	236.25
60	238.9	110	238.7		160	238.6	
210	238.7	260	238.9				

Upstream Bridge Cross Section Data

Station E	levation	n Data	num=	79					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-283.71	239.35	-279.8	239.34	-264.32	239.01	-254.45	238.64	-248.85	238.15
-246.12	238.08	-241.08	237.61	-234.29	237.6	-230.84	237.41	-221.55	237.2
-218.59	236.88	-210.36	236.63	-203.07	236.15	-198.73	236.03	-195.83	235.77
-182	234.89	-176.85	234.36	-174.28	234.3	-169.97	233.91	-158.59	233.58
-151.35	233.37	-142.12	232.96	-134.8	232.86	-125.48	233.11	-122.82	232.69
-118.24	232.47	-112.53	232.83	-107.9	232.62	-100.95	232.61	-96.52	233
-91.94	232.99	-84.1	232.73	-81.65	232.51	-75.91	232.5	-64.92	232.55
-61.34	232.68	-53.35	232.77	-46.86	232.74	-39.19	232.42	-31.34	232.52
-23.07	232.51	-21.5	231.5	-17.5	231.5	-8.46	226.88	-5.98	226.37
2.36	226.07	11.63	227.93	21.25	229.33	25.56	232.49	26.42	232.45
31.57	233.03	39.01	233.03	52.15	233.26	64.87	233.11	67.97	232.67
79.17	232.67	81.74	232.76	86.59	233	90.78	233.09	95.88	233.08
99.76	233.02	104.18	232.78	110.05	232.5	115.19	232.77	118.66	232.78
126.94	233.24	133.3	233.76	136.25	233.72	142.46	234	145.56	234.35
149.7	234.47	155.91	234.87	158.94	235.31	165.22	235.99	171.42	236.78
174.38	237.84	176.6	237.73	194.43	237.63	220	238.16		

Manning's	n Values		num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
-283.71	.08	-21.5	.03	21.25	.08

Bank Sta:	Left	Right	Coeff Contr.	Expan.
	-21.5	21.25	.3	.5
Ineffecti	ve Flow	num=	2	
Sta L	Sta R	Elev	Permanent	
-283.71	-43.5	237.3	F	
30.5	220	238.6	F	

Downstream Deck/Roadway Coordinates num= 14 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -340 237.4 -290 237.3 -240 237.3 -190 238.3 -90 237.6 -140 239 239.1 236.25 239.1 236.25 -40 239.2 -21.5 8.5 60 238.9 160 238.6 110 238.7 210 238.7 260 238.9

Downstre	am Bridge	Cross S	Section [Data					
Station	Elevation	Data	num=	89					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-343.96	239.18	-331.14	238.4	-313.22	237.93	-288.12	237.13	-275.37	236.7

-267.7	235.63	-256.8	234.78	-242.12	234.53	-228.68	234.12	-223.17	233.69
-201.77	233.56	-179.58	233.68	-170.41	233.64	-157.83	233.63	-152.98	233.57
-150	233.41	-147.3	233.27	-137.67	233.29	-135.3	232.91	-125.71	232.58
-120.9	232.52	-115.43	232.53	-110.3	232.55	-104.12	232.56	-94.88	232.53
-87.68	232.6	-82.54	232.64	-79.46	232.65	-77.04	232.47	-69.18	232.56
-63.01	232.5	-57.39	232.64	-50.67	232.58	-46.08	232.64	-38.34	232.94
-37.31	232.85	-37.05	232.77	-36.28	232.64	-21.5	231.5	-17.5	231.5
-10.78	226.84	0	226.89	6.83	228.1	10.78	230.5	27.45	232.82
36.48	233.14	44.22	233.34	49.04	233.48	53.41	233.46	60.34	233.37
73.71	233.36	76.47	232.77	80.34	232.69	91.18	232.87	100.43	232.96
105.57	233.11	112.77	233.09	125.49	232.85	129.21	233.41	134.35	233.73
136.41	233.67	138.25	233.6	139.98	233.54	143.44	233.59	145.66	233.71
148.59	233.59	150.43	233.6	152.81	233.75	156.87	233.83	160.38	234.29
161.67	234.67	162.96	234.95	165.57	235.09	168.16	235.52	170.75	235.61
172.05	235.71	173.35	235.89	177.24	236.25	179.23	236.28	180.24	236.35
182.27	236.34	183.72	236.48	186.28	237.07	188.91	237.77	189.86	238.2
192.8	239.12	194.47	239.5	197.03	239.88	198.23	239.97		
Manning's	n Value		0.um-	2					
		:S (+)	num=	5 (+-)	n \/a]				
3La 242.06		3Ld 21 E		3Ld 10 70					
-343.96	.08	-21.5	.03	10.78	.08				
Bank Sta:	Left	Right	Coeff C	Contr.	Expan.				
	-21.5	10.78		.3	.5				
Ineffecti	ve Flow	num=	2)					
Sta L	Sta R	Elev	Permane	nt					
-343.96	- 37	236.3	F						
24	198.23	237.6	F						
Upstream	Embankme	ent side	slope		=	1 hor	iz. to 1	.0 verti	cal
Downstrea	m Embank	ment sid	e slope		=	1 hor	iz. to 1	.0 verti	cal
Maximum a	llowable	e submerg	ence for	vweir fl	-OW =	.98			
Elevation	at whic	ch weir f	low begi	ns	=				
Energy he	ad used	in spill	way desi	gn	=				
Spillway	height ι	used in d	esign		=				
Weir cres	t shape				= Bro	oad Crest	ed		
Number of	Duridaa		t C.t.	. 1					
Number of	Bridge	COETTICI	ent Sets	5 = I					
Low Flow Methods and Data									
Energy									
Selected Low Flow Methods = Highest Energy Answer									
High Flow Method									
Energy Only									
Additional Bridge Parameters									
Add Friction component to Momentum									
Do not add weight component to momentum									
Class B flow critical depth computations use critical depth									

BRIDGE OUTPUT Profile #2 YR

E.G. US. (ft)	230.72	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	230.62	E.G. Elev (ft)	230.66
230.55			
Q Total (cfs)	315.00	W.S. Elev (ft)	230.42
230.19			000.01
Q Bridge (cts)	315.00	Crit W.S. (ft)	228.61
229.17		Mary Chil Duth (Ct)	4 25
Q Weir (CTS)		Max Chi Upth (tt)	4.35
3.33		V_{0} Total (ft (c)	2 01
		Ver Total (Tt/S)	2.91
Weir Sta Røt (ft)		Flow Area (sa ft)	80 65
65.34			00.05
Weir Submerg		Froude # Chl	0.33
0.46			
Weir Max Depth (ft)		Specif Force (cu ft)	189.18
143.58			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	3.34
2.68			
Min El Prs (ft)	236.25	W.P. Total (ft)	28.35
26.80			
Delta EG (ft)	0.32	Conv. Total (cfs)	8019.0
5863.2			
Delta WS (ft)	0.38	Top Width (ft)	24.14
24.37			
BR Open Area (sq ft)	241.51	Frctn Loss (ft)	0.07
0.05	4 00		
BR Upen Vel (+t/s)	4.82	C & E LOSS (+t)	0.04
0.10		Chappe Total (16/cg ft)	0.07
BR STUICE COET		Shear local (10/54 ft)	0.27
BR Sal Mathad		Power Total $(lh/ft c)$	1 07
2 12	Lifer gy only	rower rotar (10/10 S)	1.07
<pre><</pre>			

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

E.G. US. (ft)	231.84	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	231.69	E.G. Elev (ft)	231.75
231.61			
Q Total (cfs)	520.00	W.S. Elev (ft)	231.36
231.05			
Q Bridge (cts)	520.00	Crit W.S. (ft)	229.41
229.92		Marco Chill Dath (Ch)	F 20
Q Weir (Cts)		Max Chi Upth (+t)	5.29
4.21		V_{0} Total (ft (c)	E 00
5 99		Ver Total (Tt/S)	5.00
Weir Sta Røt (ft)		Flow Area (sq ft)	104 09
86.76			104.05
Weir Submerg		Froude # Chl	0.38
0.51			
Weir Max Depth (ft)		Specif Force (cu ft)	318.05
258.41		,	
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	4.01
3.39			
Min El Prs (ft)	236.25	W.P. Total (ft)	31.35
29.16			
Delta EG (ft)	0.46	Conv. Total (cfs)	11474.6
8888.9			
Delta WS (ft)	0.54	Top Width (ft)	25.93
25.57	244 54		0.00
BR Upen Area (sq ft)	241.51	Freth Loss (ft)	0.09
0.00	F 00		0.05
BR Open Vel (TL/S)	5.99	C & E LOSS (TL)	0.05
BR Sluice Coef		Shean Total (lb/cg ft)	0 13
0 64			0.45
BR Sel Method	Energy only	Power Total (lh/ft s)	2,13
3.81			2.13

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #10 YR
E.G. US. (ft)	232.65	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	232.47	E.G. Elev (ft)	232.54
232.38			
Q Total (cfs)	690.00	W.S. Elev (ft)	232.07
231.70			
Q Bridge (cts)	690.00	Crit W.S. (ft)	229.98
230.45		Mary Chill Drath (Ch)	c
Q Weir (Cts)		Max Chi Upth (+t)	6.00
4.80		$\lambda = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	5 53
WEIF SLA LTL (TL)		Ver Total (+t/s)	5.52
Weir Sta Rgt (ft)		Flow Area (sa ft)	124 97
104.44			124.37
Weir Submerg		Froude # Chl	0.40
0.53			
Weir Max Depth (ft)		Specif Force (cu ft)	436.86
365.10			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	4.13
3.45			
Min El Prs (ft)	236.25	W.P. Total (ft)	36.97
34.87			
Delta EG (ft)	0.54	Conv. Total (cfs)	14088.5
10802.7			
Delta WS (ft)	0.63	Top Width (ft)	30.24
30.26			
BR Open Area (sq ft)	241.51	Frcth Loss (ft)	0.10
0.06	C (1		0.00
a sa	0.01	C & E LOSS (TL)	0.00
PR Sluice Coof		Shoop Total (lb/cg ft)	0 51
		Shear local (10/54 lc)	0.51
BR Sel Method	Energy only	Power Total (lh/ft s)	2 79
5.04	-1101 69 01119	· • • • • • • • • • • • • • • • • • • •	2., 7

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #25 YR

E.G. US. (ft)	233.57	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	233.34	E.G. Elev (ft)	233.44
233.27			
Q Total (cfs)	920.00	W.S. Elev (ft)	232.84
232.46			
Q Bridge (cts)	920.00	Crit W.S. (ft)	230.66
231.09			c 77
Q Weir (cts)		Max Chi Dpth (+t)	6.//
5.62		V_{2} Total (ft (c)	C 01
		Ver Total (Tt/S)	0.21
Vizo Weir Sta Røt (ft)		Flow Area (sq ft)	148 13
127.32			140.15
Weir Submerg		Froude # Chl	0.42
0.54			•••
Weir Max Depth (ft)		Specif Force (cu ft)	600.77
517.81			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	4.91
4.21			
Min El Prs (ft)	236.25	W.P. Total (ft)	38.51
36.38			
Delta EG (ft)	0.60	Conv. Total (cfs)	18437.5
14804.8			
Delta WS (ft)	0.71	Top Width (ft)	30.19
30.21			
BR Open Area (sq ft)	241.51	Frcth Loss (+t)	0.10
	7 22		0.00
BR Open Vel (Tt/s)	7.23	C & E LOSS (TT)	0.06
PR Sluice Coof		Shoop Total $(lb/ca ft)$	0 60
0.84			0.00
BR Sel Method	Energy only	Power Total (lb/ft s)	3 71
6.10	Lifer by only		5.71
··-·			

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #50 YR

E.G. US. (ft)	234.25	Element	Inside	BR	US
Inside BR DS					

W.S. US. (ft)	234.00	E.G. Elev (ft)	234.09
233.93			
Q Total (cfs)	1100.00	W.S. Elev (ft)	233.41
233.03			
Q Bridge (cfs)	1100.00	Crit W.S. (ft)	231.15
231.70			
Q Weir (cfs)		Max Chl Dpth (ft)	7.34
6.19			
Weir Sta Lft (ft)		Vel Total (ft/s)	6.65
7.61			
Weir Sta Rgt (ft)		Flow Area (sq ft)	165.34
144.60			
Weir Submerg		Froude # Chl	0.43
0.54			
Weir Max Depth (ft)		Specif Force (cu ft)	740.07
649.13			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	5.48
4.79			
Min El Prs (+t)	236.25	W.P. Total (+t)	39.65
37.52	0.64		
Delta EG (+t)	0.64	Conv. Total (c+s)	21916.5
18103.2	0.74		
Delta WS (+t)	0.76	lop Width (+t)	30.16
30.18	244 54		0.40
BR Open Area (sq ft)	241.51	Frcth Loss (ft)	0.10
0.06	7.64		0.00
BR Open Vel (+t/s)	7.61	C & E LOSS (+t)	0.06
0.2/			0.55
BR Sluice Coet		Shear lotal (10/sq ft)	0.66
	F		4.26
RK SET WELDOO	Energy only	Power lotal (10/+t s)	4.36
6./6			

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #100 YR

E.G. US. (ft) 235.	01 Element	Inside	BR	US
--------------------	------------	--------	----	----

Inside BR DS			
W.S. US. (ft)	234.73	E.G. Elev (ft)	234.82
234.65			
Q Total (cfs)	1330.00	W.S. Elev (ft)	234.01
233.59			
Q Bridge (cfs)	1330.00	Crit W.S. (ft)	231.86
232.16			
Q Weir (cfs)		Max Chl Dpth (ft)	7.94
6.75			
Weir Sta Lft (ft)		Vel Total (ft/s)	7.25
8.23			
Weir Sta Rgt (ft)		Flow Area (sq ft)	183.42
161.59			o 15
Weir Submerg		Froude # Ch1	0.45
0.56			017 00
Weir Max Depth (ft)		Specif Force (cu ft)	917.00
815.5/	227 20	Under Deuth (Ct)	c 00
Min EI weir Flow (Tt)	237.38	Hyar Depth (ft)	6.09
5.30 Min [] Dnc (ft)	226 25	$U D T_{a+a} (f_{+})$	40 OF
MIN EL PRS (TL)	230.25	W.P. IOLAL (TL)	40.85
$D_0 = C_0 + C_0 $	0.74	Conv. Total (cfc)	25770 0
	0.74	conv. Total (CTS)	25776.9
Dolto WS (ft)	0 87	Ton Width (ft)	30 13
30 15	0.07		50.15
BR Open Area (sg ft)	241 51	Erctn Loss (ft)	0 10
0.06	241.91		0.10
BR Open Vel (ft/s)	8.23	C & F Loss (ft)	0.07
0.32	0.15		••••
BR Sluice Coef		Shear Total (lb/sg ft)	0.75
0.99			
BR Sel Method	Energy only	Power Total (lb/ft s)	5.41
8.18			

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #200 YR

E.G. US. (ft)	235.59	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	235.27	E.G. Elev (ft)	235.37
235.16			
Q Total (cfs)	1540.00	W.S. Elev (ft)	234.40
233.89			
Q Bridge (cfs)	1540.00	Crit W.S. (ft)	232.26
232.57			
Q Weir (cfs)		Max Chi Dpth (ft)	8.33
7.05			7 00
Weir Sta Ltt (tt)		Vel lotal (+t/s)	/.89
9.02			105 22
WEIN SLA KGL (TL)		Flow Area (sq ft)	195.23
1/0.04		Enoudo # Chl	0.19
0 60			0.40
Weir Max Depth (ft)		Specif Force (cu ft)	1069 16
957.28		Specifi force (cu re)	1005.10
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	6.49
5.66			
Min El Prs (ft)	236.25	W.P. Total (ft)	41.63
39.25			
Delta EG (ft)	0.88	Conv. Total (cfs)	28411.3
23477.1			
Delta WS (ft)	1.05	Top Width (ft)	30.10
30.13			
BR Open Area (sq ft)	241.51	Frctn Loss (ft)	0.12
0.06			
BR Open Vel (ft/s)	9.02	C & E Loss (ft)	0.09
0.39			
BR Sluice Coef		Shear Total (lb/sq ft)	0.86
1.17			
BR Sel Method	Energy only	Power Total (lb/ft s)	6.78
10.54			

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than
1.4. This may indicate the need for additional cross sections.
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #500 YR

E.G. US. (ft)	236.47	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	236.10	E.G. Elev (ft)	236.19
235.92			
Q Total (cfs)	1880.00	W.S. Elev (ft)	234.97
234.24			
Q Bridge (cfs)	1880.00	Crit W.S. (ft)	232.87
233.17			
Q Weir (cfs)		Max Chi Dpth (ft)	8.90
/.40			
Weir Sta Ltt (tt)		Vel lotal (+t/s)	8.84
10.38			212 50
Weir Sta Rgt (Tt)		Flow Area (sq ft)	212.58
181.09		Enoudo # Chl	0 F 2
weil' Submerg		Froude # Chi	0.52
Wein May Denth (ft)		Specif Force (cu ft)	1326 04
1193 06		Specifi force (cuirc)	1920.04
Min El Weir Elow (ft)	237.38	Hydr Denth (ft)	7.07
6.01	237.30		,,
Min El Prs (ft)	236.25	W.P. Total (ft)	42.79
39.95			
Delta EG (ft)	1.16	Conv. Total (cfs)	32421.5
25758.1			
Delta WS (ft)	1.41	Top Width (ft)	30.07
30.11			
BR Open Area (sq ft)	241.51	Frctn Loss (ft)	0.14
0.07			
BR Open Vel (ft/s)	10.38	C & E Loss (ft)	0.14
0.53			
BR Sluice Coef		Shear Total (lb/sq ft)	1.04
1.51			
BR Sel Method	Energy only	Power Total (lb/ft s)	9.22
15.65			

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2145

INPUT

Descripti	on: BRG	DS							
Station E	levatior	n Data	num=	90					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-343.96	239.18	-331.14	238.4	-313.22	237.93	-288.12	237.13	-275.37	236.7
-267.7	235.63	-256.8	234.78	-242.12	234.53	-228.68	234.12	-223.17	233.69
-201.77	233.56	-179.58	233.68	-170.41	233.64	-157.83	233.63	-152.98	233.57
-150	233.41	-147.3	233.27	-137.67	233.29	-135.3	232.91	-125.71	232.58
-120.9	232.52	-115.43	232.53	-110.3	232.55	-104.12	232.56	-94.88	232.53
-87.68	232.6	-82.54	232.64	-79.46	232.65	-77.04	232.47	-69.18	232.56
-63.01	232.5	-57.39	232.64	-50.67	232.58	-46.08	232.64	-38.34	232.94
-37.31	232.85	-37.05	232.77	-36.28	232.64	-27.88	230	-23.91	227.46
-18.08	227.97	-10.78	226.84	0	226.89	6.83	228.1	10.78	230.5
27.45	232.82	36.48	233.14	44.22	233.34	49.04	233.48	53.41	233.46
60.34	233.37	73.71	233.36	76.47	232.77	80.34	232.69	91.18	232.87
100.43	232.96	105.57	233.11	112.77	233.09	125.49	232.85	129.21	233.41
134.35	233.73	136.41	233.67	138.25	233.6	139.98	233.54	143.44	233.59
145.66	233.71	148.59	233.59	150.43	233.6	152.81	233.75	156.87	233.83
160.38	234.29	161.67	234.67	162.96	234.95	165.57	235.09	168.16	235.52
170.75	235.61	172.05	235.71	173.35	235.89	177.24	236.25	179.23	236.28
180.24	236.35	182.27	236.34	183.72	236.48	186.28	237.07	188.91	237.77
189.86	238.2	192.8	239.12	194.47	239.5	197.03	239.88	198.23	239.97

Manning's	n Values	5	num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
-343.96	.08	-27.88	.03	10.78	.08

Bank Sta:	Left	Right	Lengths:	Left	Channel	Right	Coeff	Contr.	Expan.
- 2	27.88	10.78		12	40	58		.3	.5
Ineffectiv	ve Flow	num=	2						
Sta L	Sta R	Elev	Permanent						
-343.96	-37	236.3	F						
24	198.23	237.6	F						

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2106

INPUT

Descripti	on:								
Station E	levatior	n Data	num=	89					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-368.67	239.28	-356.61	238.52	-346	238.04	-320.92	237.18	-309.65	236.83
-305.9	236.61	-298.38	235.9	-292.12	234.7	-289.37	234.58	-285.85	234.11
-279.15	233.95	-266.93	233.85	-254.58	233.69	-246.57	233.6	-229.27	234.06
-220.73	234.25	-204.14	234.03	-197.66	233.48	-192.22	233.44	-187.53	233.63
-179.51	233.73	-174.23	233.44	-159.79	233.36	-153.61	233.23	-149.49	233.35
-140.86	232.55	-134.31	232.51	-131.63	232.49	-124.11	232.51	-121.53	232.72
-110.33	232.87	-87.66	233.04	-84.57	232.84	-77.36	232.78	-73.85	232.49
-65	232.63	-60.88	232.58	-55.94	232.58	-50.57	232.87	-35.19	232.82
-34.82	232.82	-28.12	232.84	-27.88	229.92	-23.91	227.38	-10.78	226.76
0	226.81	6.83	228.02	10.78	230.42	10.79	232.22	14.14	232.59
20.18	232.94	26.69	233.4	32.48	233.17	33.92	232.85	38.96	232.75
41.17	233.76	44.32	234.21	55.65	233.76	61.76	232.93	68.47	232.61
71.15	233.65	73.99	233.84	80.54	233.56	82.68	233.05	89.44	232.85
100.66	232.71	106.03	232.85	108.71	233.3	115.51	233.11	120.79	233.3
124 81	232.71	129 99	232.05	134 2	222.5	142 25	232.11	151 23	232.62
160 88	233.75	167 64	233.03	171 76	232.77	183 09	232.71	188 06	232.02
106.60	232.47	107.04	232.40	200 16	232.30	212 02	233.7	210 01	232.00
224 09	227 66	220.04	234.47	202.10	224.02	213.30	230.32	210.01	250.52
224.00	257.00	250.4	230.01	232.03	239.33	239.31	240.5		
Manning's	n Value		num-	3					
		=5 C+5	num- n Vol	5 S+5	n Val				
		3Ld 27 00		3La 10 70					
-308.07	.08	-2/.00	.05	10.78	.08				
Bank Sta:	Left	Right	Lengths	s: Left C	hannel	Right	Coeff	Contr.	Expan.
-	27.88	10.78	- 0	158	138	114		.1	.3
Ineffecti	ve Flow	num=	2	2					
Sta L	Sta R	Elev	Permane	nt					
-368.67	-57	236.3	F						
200 . 0/ 44	239 37	237 6	F						
	233.37	237.0							
CROSS SEC	TION								
RIVER: NO	RTH								
REACH: MI	D		RS: 196	57					
	-								
INPUT									
Descripti	on:								
Station F	levation	n Data	num=	70					
Station 2	Flev	Sta	Flev	, s Sta	Flev	Sta	Flev	Sta	Flev
-283 07	237 /13	-271 74	237 1	-264 18	236 45	-255 05	236 32	-245 05	234 7
-222.07	227.42	-216 /5	22/01	-202 12	220.42	-202 06	220.22	-185 22	224.7
-170 72	222.00	_17/ /c	222.42	-160 50	222.0T	-15/ 65	222.20	_1/9 27	222 12
-1/2./3 1/2 01	222.04	-175 OF	222.14	121 VJ	222.29	110 00	202009 727 77	-140.2/ 11/ 25	222.42
100 00	202,40 222 OF	100 64	232.33	-101.42 01.20	222.4/	0E CO	232.31	7/ 05	232.09 727 75
- 100.00 67 70	202.00 121 01	- סעני סע דם	2020/0 222 01	-34.30 E1 37	232./Y	-05.09 16 20	202.0/ 222 CE	-14.90	2020/0 121 /1
	232.03	-27.02	222.91	-21.2/	202.03	-40.29	232.03	- 54.04	202.43
-28.1/	232.76	-28.16	229.1	-14.06	227.3	3./4	226.3	21.94	227

29.94 227.9 30.34 232.84 36.11 232.82 39.58 233.06 42.66 232.81 54.02 232.68 67.45 232.81 77.3 233.33 84.47 233.3 99.79 233.36 105.79 233.09 115.02 233.18 127.5 233 133.86 233.56 153.58 233.73 157.41 232.5 168.05 232.68 174.8 232.51 180.4 232.54 189.67 232.41 204.54 232.65 210.09 232.93 214 233.02 224.46 233.64 228.29 233.89 233.08 234.58 237.87 235.57 241.7 236.01 246.49 237.22 252.24 237.9 258.94 239.69 263.73 240.04 268.52 241.19 276.21 242.46 283.81 243.36 Manning's n Values 3 num= n Val n Val Sta Sta n Val Sta -283.07 .08 -28.16 .03 29.94 .08 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 29.94 -28.16130 125 120 .1 .3 2 Ineffective Flow num= Sta R Elev Permanent Sta L -283.07 -126 236.3 F 113 283.81 237.6 F CROSS SECTION RIVER: NORTH REACH: MID RS: 1840 INPUT Description: Station Elevation Data num= 75 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -435.01 237.42 -427.17 237.34 -419.59 236.36 -414.59 236.1 -412.09 235.47 -404.6 234.52 -397.1 234.21 -394.61 233.74 -385.86 233.62 -382.14 233.23 -376.03 233.28 -367.57 232.37 -353.81 232.86 -350.33 233.37 -328.63 233.36 -324.8 232.82 -318.9 232.59 -308.05 232.53 -300.55 232.39 -291.62 232.45 -285.24 232.68 -282.32 233.1 -271.28 232.29 -259.64 232.25 -250.12 232.45 -236.37 232.43 -227.9 232.39 -221.55 232.35 -212.49 232.48 -206.75 232.32 232.52 -192.99 233.39 -177.28 233.45 -168.62 233.49 -162.73 -197.1 233.49 -151.76 233.51 -143.7 233.35 -137.66 233.29 -131.87 232.94 -124.9 232.44 -118.18 232.52 -108.89 233.24 -102.95 233.2 -92.34 232.92 -86.56 232.45 -79.23 232.68 -69.07 232.68 -59.54 232.84 -50.81 232.56 -39.1 232.62 -31.35 232.57 -23.1 233 -21.65 228.5 -14.55 226.8 -4.35 226.7 5.05 227.4 16.65 229.5 18.15 232.6 27.98 233.21 35.76 233.32 53.27 233.37 60.5 232.86 67.54 232.96 70.21 233.54 78.21 233.36 94.12 232.94 107.74 232.72 119.53 233.09 135.32 233.34 150 233.97 157.14 234.77 171.76 238.39 178.01 240.24 165.49 237 182.29 240.92 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val .08 -435.01 .08 -21.65 .03 16.65 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-	21.65	16.65	-	235	295	340		.1	.3
Ineffecti	ve Flow	num=	2	<u>.</u>					
Sta L	Sta R	Elev	Permane	ent					
-435.01	-188.5	236.3	F						
175.5	182.29	237.6	F						
CROSS SEC	TION								
RIVER: NO	RIH								
REACH: MI	D		KS: 154	-5					
INPUT									
Descripti	on:								
Station E	levatior	n Data	num=	65					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-480.73	237.79	-466.57	236.33	-462.82	234.54	-447.81	234.36	-431.38	233.55
-409.46	233.27	-388.5	233.11	-370.86	232.95	-343.2	232.97	-325.64	232.41
-311.62	232.36	-295.8	232.29	-273.64	232.2	-248.51	232.53	-243.41	232.27
-232.05	232.35	-216.44	232.45	-201.73	232.68	-190.36	232.67	-182.25	232.57
-162.4	232.67	-132.62	232.57	-123.42	232.5	-85.97	233.02	-69.1	233.43
-55.42	233.75	-26.16	233.77	-21.65	227.91	-14.55	226.21	-4.35	226.11
5.05	226.81	16.65	228.91	18.05	232.67	18.95	232.77	20.43	233.31
41.64	233.03	57.37	232.35	66.05	232.25	85.45	232.73	104.51	232.93
138.05	233.2	162.05	232.43	186.04	232.4	215.49	232.34	228.79	232.38
239.13	232.37	259.3	232.55	285.83	232.28	323.72	232.8	340.54	232.8
354.88	232.82	376.77	232.86	400.77	233.06	408.92	232.93	424.77	233.07
442.46	234.51	450.83	235.77	467.72	236.88	500.68	237.23	529.61	237.25
534.61	238.37	552.4	238.72	555.36	239.27	583.92	241.84	594.56	241.83
Manning's	n Value	25	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-480.73	.08	-21.65	.03	16.65	.08				
Bank Sta.	left	Right	Lengths	· left (hannel	Right	Coeff	Contr	Fynan
-	21.65	16.65	2018011	205	250	285		.1	.3
Ineffecti	ve Flow	num=	7) _05	250	205		•-	• 5
Sta I	Sta R	Flev	Permane	- nt					
-480.73	- 336	236.3	F						
232.15	594.56	237.6	F						
CROSS SEC	TION								
RIVER: NO	RTH								
REACH: MI	D		RS: 129	95					
INPUT									
Descripti	on:								
Station E	levatior	n Data	num=	73					

Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-403.24	238.81	-394.41	238.51	-388.15	237.61	-381.89	234.7	-376.88	234.48
-374.37	234.03	-364.28	233.38	-358.94	233.43	-346.74	232.37	-339.31	232.43
-330.88	232.35	-319.27	232.08	-312.17	232.85	-301.96	232.88	-295.47	233.14
-274.85	233.11	-272.93	232.7	-261.39	232.42	-248.92	232.44	-237.14	232.38
-226.65	232.31	-219.97	232.81	-212.39	233.09	-197.78	233.18	-195.27	232.85
-189.99	232.66	-185.25	232.51	-178.99	232.54	-165.21	232.45	-161.46	232.91
-151.44	233.27	-137.66	232.97	-121.38	232.6	-114.57	232.37	-107.72	232.38
-94.36	232.18	-87.7	232.32	-82.38	232.3	-61.66	232.5	-53.99	232.55
-48.57	232.27	-40.69	232.21	-35.48	232.38	-22.95	232.21	-21.65	227.41
-14.55	225.71	-4.35	225.61	5.05	226.31	16.65	228.41	17.86	232.19
29.39	232.55	43.58	232.42	49.79	233	55.11	233.08	67.61	232.91
84.38	232.69	90.51	232.4	98.7	232.09	113.93	232.18	123.61	232.28
133.55	232.74	145.11	233.19	156.54	233.35	170.45	234.27	184.12	237.66
186.22	238.49	196.33	240.78	210.45	242.19	219.87	242.61	227.23	242.67
234.59	243.13	243.65	243.09	255.61	243.24				
Manning's	n Value	25	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-403.24	.08	-21.65	.03	16.65	.08				
Bank Stai	l oft	Pight	Longthe	·· Loft C	`hanno]	Pight	Cooff	Contr	Evnan
- Jank Sta	21.65	16.65	Lengens	295	295	295	coerr	.1	.3
CRUSS SEC	TION								
	DTU								
RIVER: NU			DC. 100	0					
REACH: MI	D		RS: 100	00					
INPUT									
Descripti	on: DS l	LIMIT							
Station E	levatio	n Data	num=	84					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-177.41	241.46	-169.62	241.51	-163.4	241.44	-159.61	241.06	-152.07	240.44
-150.81	240.24	-147.03	240	-144.52	239.59	-135.7	238.75	-128.16	237.51
-121.86	235.95	-119.58	235.47	-113.04	234.52	-110.53	234.42	-105.69	233.81
-104.77	233.57	-101.17	233.28	-98.3	233.45	-93.71	233.07	-91.87	233.08
-89.1	233.38	-86.34	233.26	-81.73	232.64	-78.96	232.67	-73.43	232.51
-69.74	232.57	-67.19	232.72	-64.07	233.31	-61.34	232.72	-59.04	232.58
-52.8	232.5	-46.7	232.03	-43.33	231.97	-37.15	232.06	-33.8	232.41
-31 03	232.13	-22 39	232.05	-21 65	226 82	-14 55	225 12	-4 35	225 02
5 05	202.44	16 65	222.42	19 66	220.02	43 94	223.12	4.55	222.02
53 77	2223.72	56 53	227.02	62 44	232.91	67 59	232.14	69 23	232.50
יייני דר דר	22.09	79 52	222.70	82 22	22.00	82 78	222.JU	86 03	222.21
20 72	232.10	, J.J.J. N SD	232.50	95 /1	222.4	02.70 02.70	222.02	106 21	222.14
112 22	222.27	117 /19	232.14	122 52	232.42	120 Q	232.32	138 62	236 68
140 65	232.27	144 62	233.74	152 7/	224.41	157 01	233.42	158 15	230.00
160.00	220.23	168 57	210 27	170 26	200.44	172 88	210.70	175 00	241 20
1Q1 6	237.29	182 05	240.27 2/1 QQ	188 13	240./ 2/1 07	102 20	2 40 .00 2∦2 12	102 5/	241.39
101.0	Z+I.0	102.20	ZHI.00	100.17	Z+I.JJ	20.02	272.12	1,0.,14	<u> 272014</u>

206.35 242.5 208.13 242.52 212.87 242.28 217.74 242.33

Manning's	n Value	25	num=	3				
Sta	n Val	Sta	n Val	Sta	n Val			
-177.41	.08	-21.65	.03	16.65	.08			
Bank Sta:	Left	Right	Lengths:	Left (Channel	Right	Coeff Contr.	Expan.
- 2	21.65	16.65		0	0	0	.1	.3

SUMMARY OF MANNING'S N VALUES

River:NORTH

	Reach	River Sta.	n1	n2	n3
MID		2520	.08	.03	.08
MID		2348	.08	.03	.08
MID		2265	.08	.03	.08
MID		2231	.08	.03	.08
MID		2192	Bridge		
MID		2145	.08	.03	.08
MID		2106	.08	.03	.08
MID		1967	.08	.03	.08
MID		1840	.08	.03	.08
MID		1545	.08	.03	.08
MID		1295	.08	.03	.08
MID		1000	.08	.03	.08

SUMMARY OF REACH LENGTHS

River: NORTH

	Reach	River Sta.	Left	Channel	Right
MID		2520	185	172	163
MID		2348	80	82	82
MID		2265	21	34	43
MID		2231	86	86	86
MID		2192	Bridge		
MID		2145	12	40	58
MID		2106	158	138	114
MID		1967	130	125	120
MID		1840	235	295	340
MID		1545	205	250	285
MID		1295	295	295	295

MID	1000	0	0	0
		-	-	-

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: NORTH

	Reach	River	Sta	Contr.	Expan.
MID		2520		.1	.3
MID		2348		.1	.3
MID		2265		.3	.5
MID		2231		.3	.5
MID		2192		Bridge	
MID		2145		.3	.5
MID		2106		.1	.3
MID		1967		.1	.3
MID		1840		.1	.3
MID		1545		.1	.3
MID		1295		.1	.3
MID		1000		.1	.3

Profile Output Table - Standard Table 1

Reach	River Sta	Profile	e Q Total	Min Ch El	W.S. Elev	Crit W.S.
E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	
			(cfs)	(ft)	(ft)	(ft)
(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		
MID	2520	2 YR	315.00	226.70	230.88	228.65
230.97	0.000507	2.43	131.28	44.01	0.24	
MID	2520	5 YR	520.00	226.70	231.98	229.24
232.12	0.000523	2.99	182.36	48.53	0.25	
MID	2520	10 YR	690.00	226.70	232.77	229.66
232.94	0.000523	3.34	226.44	74.30	0.26	
MID	2520	25 YR	920.00	226.70	233.68	230.14
233.86	0.000479	3.55	471.83	423.81	0.25	
MID	2520	50 YR	1100.00	226.70	234.34	230.48
234.49	0.000376	3.37	775.90	478.18	0.23	
MID	2520	100 YR	1330.00	226.70	235.09	230.88
235.20	0.000287	3.16	1144.55	506.55	0.20	
MID	2520	200 YR	1540.00	226.70	235.67	231.23
235.76	0.000243	3.05	1438.02	552.87	0.19	
MID	2520	500 YR	1880.00	226.70	236.54	231.76
236.61	0.000194	2.92	1890.38	576.31	0.17	

MID	2348	2 YR	315.00	226.40	230.68	228.91
230.84	0.000963	3.23	99.01	33.65	0.32	
MID	2348	5 YR	520.00	226.40	231.74	229.61
231.99	0.000985	3.97	135.81	35.80	0.34	
MID	2348	10 YR	690.00	226.40	232.51	230.04
232.81	0.000984	4.43	164.78	74.42	0.35	
MID	2348	25 YR	920.00	226.40	233.42	230.57
233.73	0.000877	4.68	337.50	417.54	0.34	
MID	2348	50 YR	1100.00	226.40	234.14	230.94
234.39	0.000671	4.43	536.67	552.70	0.30	
MID	2348	100 YR	1330.00	226.40	234.92	231.41
235.13	0.000525	4.22	766.17	581.00	0.27	
MID	2348	200 YR	1540.00	226.40	235.51	231.80
235.69	0.000456	4.14	944.84	589.45	0.26	
MID	2348	500 YR	1880.00	226.40	236.40	232.40
236.56	0.000376	4.03	1217.02	603.40	0.24	
MID	2265	2 YR	315.00	226.15	230.62	228.66
230.77	0.000793	3.05	103.94	32.05	0.29	
MID	2265	5 YR	520.00	226.15	231.68	229.35
231.90	0.000859	3.81	138.19	32.82	0.32	
MID	2265	10 YR	690.00	226.15	232.44	229.78
232.73	0.000884	4.30	163.47	33.38	0.33	
MID	2265	25 YR	920.00	226.15	233.31	230.31
233.66	0.000896	4.81	247.02	323.90	0.35	
MID	2265	50 YR	1100.00	226.15	233.97	230.69
234.32	0.000817	4.92	341.45	512.23	0.34	
MID	2265	100 YR	1330.00	226.15	234.72	231.14
235.06	0.000745	5.05	447.02	566.56	0.33	
MID	2265	200 YR	1540.00	226.15	235.27	231.55
235.63	0.000721	5.21	526.17	580.23	0.33	
MID	2265	500 YR	1880.00	226.15	236.13	232.15
236.50	0.000678	5.41	648.30	600.25	0.32	
MID	2231	2 YR	315.00	226.07	230.62	228.55
230.72	0.000566	2.51	127.27	42.59	0.25	
MID	2231	5 YR	520.00	226.07	231.69	229.20
231.84	0.000578	3.08	174.08	44.83	0.26	
MID	2231	10 YR	690.00	226.07	232.47	229.58
232.65	0.000577	3.44	209.64	52.31	0.27	
MID	2231	25 YR	920.00	226.07	233.34	230.03
233.57	0.000584	3.86	272.64	279.00	0.28	
MID	2231	50 YR	1100.00	226.07	234.00	230.35
234.25	0.000570	4.09	321.04	313.38	0.28	
MID	2231	100 YR	1330.00	226.07	234.73	230.74
235.01	0.000567	4.37	374.84	334.08	0.29	

MID 235.59	2231 0.000584	200 YR 4.66	1540.00 415.12	226.07 346.64	235.27 0.29	231.07
MID	2231	500 YR	1880.00	226.07	236.10	231.59
236.47	0.000601	5.06	476.83	367.53	0.30	
MID	2192		Bridge			
мтр	2145	2 YR	315.00	226.84	230.24	228.77
230.40	0.001166	3.14	100.55	39.01	0.34	
MID	2145	5 YR	520.00	226.84	231.16	229.34
231.39	0.001176	3.82	139.50	47.09	0.36	
MID	2145	10 YR	690.00	226.84	231.84	229.75
232.12	0.001131	4.22	174.09	54.17	0.36	
MID	2145	25 YR	920.00	226.84	232.64	230.24
232.97	0.001099	4.67	220.22	140.38	0.37	
MID	2145	50 YR	1100.00	226.84	233.24	230.58
233.61	0.001049	4.92	256.94	231.63	0.37	
MID	2145	100 YR	1330.00	226.84	233.85	231.00
234.27	0.001060	5.30	294.27	382.33	0.37	
MID	2145	200 YR	1540.00	226.84	234.22	231.35
234.71	0.001160	5.76	316.50	391.75	0.40	
MID	2145	500 YR	1880.00	226.84	234.69	231.90
235.31	0.001350	6.51	345.37	413.39	0.43	
мтр	2106	2 VP	215 00	226 76	220 21	770 E2
220 2E	2100		107 15	220.70	250.21	220.00
230.33 MTD	2106	2.95 5 VR	520 00	20.54	221 12	220 11
221 22	0 000008	3 64	1/12 82	38 76	231.13	229.11
MTD	2106	10 VR	690 00	226 76	231 81	229 53
232 07	0 000999	4 98	169 26	38 82	0 34	223.33
MTD	2106	25 YR	920,00	226.76	232,60	230.02
232.93	0.001021	4.61	200.64	95.14	0.36	230.02
MTD	2106	50 YR	1100.00	226.76	233.19	230.35
233.56	0.001008	4.92	241.75	269.11	0.36	250155
MID	2106	100 YR	1330.00	226.76	233.80	230.77
234.23	0.001014	5.28	301.24	405.53	0.37	
MID	2106	200 YR	1540.00	226.76	234.17	231.10
234.66	0.001098	5.71	338.10	473.39	0.39	
MID	2106	500 YR	1880.00	226.76	234.65	231.63
235.25	0.001259	6.39	386.05	494.50	0.42	
	1015					
MID	1967	2 YR	315.00	226.30	230.20	228.02
230.25	0.000302	1.80	1/5.69	58.29	0.18	222 47
MID	1967	5 YR	520.00	226.30	231.14	228.47
231.22	0.000334	2.26	230.41	58.37	0.20	

MID	1967	10 YR	690.00	226.30	231.84	228.79
231.94	0.000342	2.55	271.43	58.43	0.21	
MID	1967	25 YR	920.00	226.30	232.66	229.16
232.79	0.000354	2.89	323.62	178.80	0.22	
MID	1967	50 YR	1100.00	226.30	233.27	229.42
233.42	0.000345	3.06	431.90	357.28	0.22	
MID	1967	100 YR	1330.00	226.30	233.92	229.73
234.07	0.000335	3.22	585.36	460.57	0.22	
MID	1967	200 YR	1540.00	226.30	234.32	229.98
234.49	0.000351	3.43	680.77	469.97	0.23	
MTD	1967	500 YR	1880.00	226.30	234.84	230.37
235.04	0.000385	3.77	806.48	480.30	0.24	230137
233.01	0.000505	5.77	000110	100.50	0.21	
MID	1840	2 YR	315.00	226.70	230.00	228.69
230.17	0.001322	3.29	96.10	39.03	0.37	
MID	1840	5 YR	520.00	226.70	230.88	229.28
231.13	0.001323	4.02	130.53	39.73	0.39	
MID	1840	10 YR	690.00	226.70	231.54	229.67
231.85	0.001280	4.46	157.04	40.27	0.39	
MID	1840	25 YR	920.00	226.70	232.30	230.12
232.69	0.001277	5.00	187.91	55.12	0.40	
MID	1840	50 YR	1100.00	226.70	232.88	230.46
233.31	0.001239	5.31	232.71	289.43	0.40	
MID	1840	100 YR	1330.00	226.70	233.52	230.86
233.97	0.001154	5.52	375.22	523.29	0.40	
MID	1840	200 YR	1540.00	226.70	233.95	231.20
234.39	0.001086	5.61	518.52	545.22	0.39	
MID	1840	500 YR	1880.00	226.70	234.52	231.72
234.95	0.001015	5.74	714.34	559.56	0.38	
МТП	15/15	2 VR	390 00	226 11	220 12	228 32
229 68	0 001006	2 TK 1 06	96 99	39 66	0 15	220.52
MTD	15/15	5 VR	630.00	226 11	230 26	228 95
230 63	0 001000	J 11	130 56	10 61	230.20	220.75
Z30.03	1515	4.91 10 VP	120.20	40.01 226 11	220 00	220 20
221 26	0 001096		156 29	220.11 /1 22	230.09	229.30
231.30 MTD	1545		1110.00	41.55	221 61	220 00
02 22 D	LJ4J 0 001001		196 57	42 16	251.01	229.00
232.20	1545	0.14 FO VD	1220.00	42.10	9.50 222 15	220.26
	1545		1330.00	220.11	232.15	230.20
232.82	0.001976	6.59 100 VD	209.45	42.//	0.51	220 70
		TOO AK		ZZ0.11	232.84	230.70
233.53	0.001/64	0./b	3/2.94	553.44	0.49	224 00
	1545	200 YK	101.00	226.11	233.55	231.08
234.04	0.001241	6.12	/21.03	824.31	0.42	224 62
MTD	1545	500 YR	2230.00	226.11	234.30	231.63
234.65	0.000895	5.58	1139.50	886.53	0.36	

MID	1295	2 YR	390.00	225.61	228.92	
229.18	0.002000	4.06	96.40	38.87	0.45	
MID	1295	5 YR	630.00	225.61	229.76	
230.13	0.002000	4.92	129.09	39.37	0.47	
MID	1295	10 YR	840.00	225.61	230.39	
230.86	0.002001	5.52	153.95	39.74	0.49	
MID	1295	25 YR	1110.00	225.61	231.11	
231.70	0.002003	6.17	182.73	40.16	0.50	
MID	1295	50 YR	1330.00	225.61	231.64	
232.33	0.002003	6.63	204.36	40.48	0.51	
MID	1295	100 YR	1600.00	225.61	232.26	
233.05	0.002004	7.14	233.10	98.12	0.52	
MID	1295	200 YR	1850.00	225.61	232.87	230.57
233.65	0.001782	7.20	401.12	384.93	0.50	
MID	1295	500 YR	2230.00	225.61	233.91	231.13
234.39	0.001090	6.22	915.66	537.47	0.40	
MTD	1000		200.00	225 02	220 22	222 22
	1000		390.00	223.02	228.35	227.23
228.39	0.002004	4.00	90.23	20.00	0.45	227 05
MID	1000	5 YR	630.00	225.02	229.17	227.85
229.54	0.002000	4.92	128.95	39.40	0.47	
MID	1000	10 YR	840.00	225.02	229.80	228.29
230.27	0.002002	5.52	153.84	39.86	0.49	
MID	1000	25 YR	1110.00	225.02	230.52	228.78
231.11	0.002003	6.17	182.72	40.38	0.50	
MID	1000	50 YR	1330.00	225.02	231.05	229.16
231.74	0.002002	6.63	204.51	40.76	0.51	
MID	1000	100 YR	1600.00	225.02	231.67	229.61
232.45	0.002002	7.13	229.57	41.21	0.52	
MID	1000	200 YR	1850.00	225.02	232.19	229.98
233.08	0.002002	7.56	253.50	56.91	0.53	
MID	1000	500 YR	2230.00	225.02	232.90	230.55
233.91	0.002002	8.11	326.78	151.63	0.54	

Profile Output Table - Six XS Bridge

Reac	h	Rive	er Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn
Loss	C & E	Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl (ft)	
(ft)		(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	
MID		2265	5	2 YR	230.77	230.62	228.66	
0.02		0.02	32.05	0.14	314.85	0.01	3.05	
MID		226	5	5 YR	231.90	231.68	229.35	
0.02		0.04	32.82	0.73	519.25	0.03	3.81	

MID	2265		10 YR	232.73	232.44	229.78
0.02	0.05	33.38	1.57	688.38	0.05	4.30
MID	2265		25 YR	233.66	233.31	230.31
0.02	0.06	323.90	8.86	898.16	12.98	4.81
MID	2265		50 YR	234.32	233.97	230.69
0.02	0.05	512.23	36.76	1021.54	41.71	4.92
MID	2265		100 YR	235.06	234.72	231.14
0.02	0.03	566.56	81.29	1163.50	85.21	5.05
MTD	2265	200120	200 YR	235.63	235.27	231.55
0.02	0.02	580.23	123.27	1291.15	125.58	5.21
MTD	2265	500125	500 YR	236.50	236.13	232.15
0 02	0 00	600 25	197 91	1485 55	196 54	5 41
0.02	0.00	000.25	177.71	1+05.55	190.94	5.41
MID	2231		2 YR	230.72	230.62	228.55
0.02	0.04	42.59	0.18	314.50	0.33	2.51
MID	2231		5 YR	231.84	231.69	229.20
0.02	0.07	44.83	0.80	517.55	1.65	3.08
MID	2231		10 YR	232.65	232.47	229.58
0.02	0.09	52.31	1.67	684.82	3.51	3.44
MID	2231		25 YR	233.57	233.34	230.03
0.02	0.11	279.00	10.72	901.61	7.67	3.86
MID	2231		50 YR	234.25	234.00	230.35
0.02	0.13	313.38	24.48	1061.72	13.80	4.09
MID	2231		100 YR	235.01	234.73	230.74
0.02	0.16	334.08	44.81	1262.88	22.31	4.37
MID	2231		200 YR	235.59	235.27	231.07
0.02	0.20	346.64	64.07	1445.74	30.19	4.66
MID	2231		500 YR	236.47	236.10	231.59
0.03	0.25	367.53	98.73	1737.28	43.99	5.06
МТП	2102	RD II	2 VP	230 66	220 12	228 61
0 07	0 01	24 14	2 11	215 00	250.42	2 01
MTD	0.04 2102	24.14 BD 11	5 VP	221 75	221 26	220 /1
MID	0 05			520.00	251.50	5 00
MTD	2102	23.95	10 VD	220.00	222 07	2.00
	2192			252.54	252.07	229.90
0.10	2102	50.24 DD 11	25 VD	222 44	222 04	2.22
	2192	DK U		233.44	252.84	230.00
0.10	0.00	30.19	0.01	919.99	222 44	0.21
MID	2192	BRU	50 YK	234.09	233.41	231.15
0.10	0.06	30.16	100.01	1033.33	224 24	6.66
MID	2192	BK U	TOO AK	234.82	234.01	231.86
0.10	0.0/	30.13	0.02	1329.98	224 40	/.26
MID	2192	BK U	200 YR	235.3/	234.40	232.26
0.12	0.09	30.10	0.02	1539.98		/.89
MID	2192	BK U	500 YR	236.19	234.97	232.87
0.14	0.14	30.07	0.02	1879.98		8.85

MID	2192	BR D	2 YR	230.55	230.19	229.17
0.05	0.10	24.37		315.00		4.82
MID	2192	BR D	5 YR	231.61	231.05	229.92
0.06	0.17	25.57		520.00		5.99
MID	2192	BR D	10 YR	232.38	231.70	230.45
0.06	0.20	30.26	0.00	690.00		6.61
MID	2192	BR D	25 YR	233.27	232.46	231.09
0.06	0.24	30.21	0.01	919.99		7.23
MID	2192	BR D	50 YR	233.93	233.03	231.70
0.06	0.27	30.18	0.02	1099.99		7.61
MID	2192	BR D	100 YR	234.65	233.59	232.16
0.06	0.32	30.15	0.02	1329.98		8.24
MID	2192	BR D	200 YR	235.16	233.89	232.57
0.06	0.39	30.13	0.02	1539.98		9.03
MID	2192	BR D	500 YR	235.92	234.24	233.17
0.07	0.53	30.11	0.03	1879.98		10.39
MID	2145		2 YR	230.40	230.24	228.77
0.04	0.01	39.01	0.01	314.99		3.14
MID	2145		5 YR	231.39	231.16	229.34
0.04	0.01	47.09	0.92	518.61	0.47	3.82
MID	2145		10 YR	232.12	231.84	229.75
0.04	0.01	54.17	3.10	683.82	3.08	4.22
MID	2145		25 YR	232.97	232.64	230.24
0.04	0.00	140.38	7.96	900.78	11.26	4.67
MID	2145		50 YR	233.61	233.24	230.58
0.04	0.00	231.63	14.36	1064.16	21.48	4.92
MID	2145		100 YR	234.27	233.85	231.00
0.04	0.00	382.33	23.44	1271.58	34.99	5.30
MID	2145		200 YR	234.71	234.22	231.35
0.04	0.00	391.75	30.96	1462.86	46.18	5.76
MID	2145		500 YR	235.31	234.69	231.90
0.05	0.01	413.39	43.36	1772.00	64.64	6.51
MID	2106		2 YR	230.35	230.21	228.53
0.07	0.03	38.34	0.00	315.00		2.93
MID	2106		5 YR	231.33	231.13	229.11
0.07	0.04	38.76	0.00	520.00	0.00	3.64
MID	2106		10 YR	232.07	231.81	229.53
0.08	0.05	38.82	0.02	689.98	0.00	4.08
MID	2106		25 YR	232.93	232.60	230.02
0.08	0.06	95.14	0.04	919.86	0.10	4.61
MID	2106		50 YR	233.56	233.19	230.35
0.08	0.07	269.11	3.35	1094.27	2.38	4.92
MID	2106		100 YR	234.23	233.80	230.77
0.07	0.08	405.53	16.44	1300.75	12.81	5.28
MID	2106		200 YR	234.66	234.17	231.10
0.08	0.10	473.39	28.80	1487.31	23.90	5.71

MID	2106		500 YR	235.25	234.65	231.63
0.09	0.12	494.50	50.51	1783.50	45.99	6.39

HEC-RAS HEC-RAS 6.1.0 September 2021 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		ХΧ	XX	X	X	XXXX
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	Х	Х			Х	Х	Х	Х	Х
XXXX	XXX	XXXX	Х		XXX	ХХ	ХХ	ХХХ	XXX	XXXX
Х	Х	Х	Х			Х	Х	Х	Х	Х
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	XXXXXX	ХХ	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA Project Title: Replacement of Bridge No. 141/127 Project File : 141-127 Route 152.prj Run Date and Time: 10/26/2022 12:21:01 PM

Project in English units

Project Description: NH Route 152 over North River - Final Hydraulic Design Report

PLAN DATA

Plan Title: NHDES 66' Clear Span

Plan File : t:\Projects\New
Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS
Modeling\HEC-RAS\141-127 Route 152.p03

Geometry Title: NHDES 66' Clear Span Geometry File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.g03

Flow Title : StreamStats Design Flow File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.f01

Plan Description:

Stream Crossing Rules Compliant Structure 66' Clear Span NAVD88 Daturm Plan Summary Information: Number of: Cross Sections = 11 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 = 1 Lateral Structures = 0 Bridges Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.33 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Average Conveyance Friction Slope Method: Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: StreamStats Design
Flow File : t:\Projects\New
Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS
Modeling\HEC-RAS\141-127 Route 152.f01

Flow Data (cfs)

River	Reach	RS	:	2 YR		5 YR	
10 YR	25 YR	50 YR	100 YR		200 YR		500
YR							
NORTH	MID	2520		315		520	
690	920	1100	1330		1540		
1880							
NORTH	MID	1545		390		630	
840	1110	1330	1600		1850		
2230							
North R	River RT 152	1971					

Boundary Conditions

River	Reach	Profile	Upstream
Downstream			
NORTH	MID	2 YR	Critical
Normal S = 0.002			
NORTH	MID	5 YR	Critical
Normal S = 0.002			
NORTH	MID	10 YR	Critical
Normal $S = 0.002$			
NORTH	MID	25 YR	Critical
Normal $S = 0.002$			
NORTH	MID	50 YR	Critical
Normal $S = 0.002$			
NORTH	MID	100 YR	Critical
Normal $S = 0.002$			
NORTH	MID	200 YR	Critical
Normal $S = 0.002$			
NORTH	MID	500 YR	Critical
Normal $S = 0.002$			

GEOMETRY DATA

Geometry Title: NHDES 66' Clear Span Geometry File : t:\Projects\New Hampshire\Nottingham_40612\40612\Computations\Hydraulics\HEC-RAS Modeling\HEC-RAS\141-127 Route 152.g03

CROSS SECTION

RIVER: NORTH REACH: MID RS: 2520

INPUT Description: US LIMIT Station Elevation Data 75 num= Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -298.56 242.06 -278.59 240.38 -264.7 239.67 -255.04 239.15 -243.35 238.18 -225.46 237.92 -218.81 237.25 -208.2 236.68 -199.53 235.96 -192.1 235.02

-187	234.78	-168.2	233.23	-164.44	233.23	-153.38	232.62	-146.37	232.53
-138.12	232.67	-133.06	232.91	-119.47	232.93	-107.01	233.42	-86.52	233.18
-77.55	232.89	-62.5	232.77	-57.16	233.2	-51.19	233.12	-41.29	232.91
-31.1	232.93	-30	232.77	-28.84	232.45	-27.47	232.27	-24.31	231.87
-22.76	231.1	-17.36	230.2	-6.76	226.7	.04	226.8	2.04	226.8
10.44	227	17.64	227.9	21.14	229	21.74	229.7	23.34	231.9
23.7	233.01	35.74	233.39	45.93	233.12	56.19	233.23	63.26	233.55
76.91	233.49	85.59	233.15	93.26	233.03	99.54	232.95	115.89	233.12
121.84	233.32	136.01	233.45	139.96	233.12	145.63	233.25	157.93	233.04
167.15	233.16	181.28	233.04	187.6	232.88	197.74	232.93	204.54	233.27
215.24	233.05	221.6	233.24	230.6	233.25	236.62	233.79	254.39	233.6
266.85	233.72	284.98	234.2	296.98	234.35	318.36	235.29	329.67	235.44
340.49	235.72	358 58	235 76	378 36	237 12	391 61	233.23	413 33	233.44
540.45	233.17	550.50	255.70	570.50	237.12	JJ1.01	237.4	+1).))	240
Manning's	n Value	20	num-	З					
5 rianniing 5+2	n Val		n Val	5 Sta	n Val				
		17 26		21 7 <i>1</i>					
-296.50	.00	-17.50	.05	21./4	.00				
Rank Star	l oft	Pight	Longthe	· Loft C	hannol	Dight	Cooff	Contr	Evnon
Dalik Sta.	17 26	21 74	Lengths	105 105	172	162	CUEIT	1	د Expan
- Troffocti		21.74	1	103	1/2	102		• 1	• 2
Ineffecti	Ve FIOW	num=	L	t.					
Sta L	Sta K	Elev	Permane	nt					
318.5	413.33	238.6	F						
CROSS SEC	TION								
RIVER: NO	RTH								
REACH: MI	D		RS: 234	.8					
INPUT									
Descripti	on:								
Station E	levatior	n Data	num=	74					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-212.51	240.46	-209.38	239.92	-207.42	239.76	-202.36	239.04	-198.95	238.81
-190.48	238.06	-187.65	238.02	-175.42	237.3	-168.06	236.61	-157.91	235.35
-154.1	234.74	-143.95	234.45	-139.87	234.44	-134.47	233.96	-126.19	233.71
-118.58	233.26	-108.29	233.41	-99.55	233.3	-95.74	233.05	-90.15	232.88
-84 75	232.20	-80 52	232.41	-76 04	222.2	-72 6	232.05	-66 56	232.00
-63 13	232.05	-59.89	232.00	-53 4	222.0	-50 16	232.47	-44 75	232.44
-38 27	232.73	- 30 3	222.70	-27 /6	232.33	- 20 98	232.54	- 20 28	222.24
- 30.27	233.04	- 32.3	222.92	-27.40	252.7	-20.90	232.39	-20.20	229.0
-10.28	220.0	-/.00	220.0	1 - 01	220.43	./2	220.4	0.12	22/.0
10.82	229.4	15.12	231.8	15.91	232.52	21.15	232.85	36.24	233
52.31	233.01	60.38	232.59	/4.36	232.66	92.07	232.68	98.47	232.7
104.96	232.65	112.46	232.66	132.67	232.41	144.54	232.56	176.29	232.48
186.14	232.56	198.63	232.51	210.23	232.65	245.44	232.58	254.02	233.59
264.41	233.78	271.54	233.76	298.91	233.94	312.48	233.95	318.62	233.78
337.04	233 64	346.64	233 47	355 84	222 2/	378 27	222 21	399 64	222 /0
	233.04	510101	233.47	555.04	255.54	5/0.2/	233.21	JJJ.0 4	233.43

Manning's n Values num= 3 n Val Sta n Val Sta n Val Sta -212.51 .08 -20.28 .03 10.82 .08 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -20.28 10.82 80 82 82 .3 .1 2 Ineffective Flow num= Sta R Elev Sta L Permanent -212.51 -159.5 237.3 F 478.3 238.6 F 146.5 CROSS SECTION RIVER: NORTH REACH: MID RS: 2265 INPUT Description: BRG APPROACH Station Elevation Data num= 72 Sta Elev Elev Sta Elev Sta Elev Sta Elev Sta -264.42 240.04 -255.02 239.82 -249.54 239.4 -238.56 238.9 -226.67 238.48 238.2 -204.21 236.94 -199.16 236.14 -180.55 234.95 -175.95 -224.01 234.83 -154.84 233.52 -140.56 233.76 -132.1 232.91 -119.86 232.72 -111.63 232.57 232.99 -81.78 232.99 -59.88 232.92 -50.94 233.05 -35.51 -100.32 232.84 -22.49 232.69 -20.28 229.35 -16.28 228.55 -7.88 226.55 0 226.18 .72 226.15 8.12 227.55 10.82 229.15 11.06 232.48 30.8 232.45 49.45 233.22 46.88 232.64 58.44 233.04 76.49 233.36 79 232.5 97.26 232.97 87.6 232.5 90.56 232.92 109.83 233.38 113.87 232.86 121.39 232.51 129.1 233.3 130.38 233.91 161.21 234.01 174.11 233.28 184.49 233.28 189.68 232.8 195.87 232.82 204.22 233.04 221.63 233.31 235.35 233.44 241.9 233.71 252.81 233.91 259.28 234.22 263.8 234.42 274.65 234.15 280.11 234.08 284.48 233.55 290.9 233.38 300.85 233.5 311.23 233.32 320.09 233.25 326.42 233.91 339.09 233.89 342.87 233.77 355.44 233.42 369.21 233.43 382.73 233.14 389.71 234.01 394.74 235.3 401.1 236.05 403.63 238.21 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -264.42 .08 -20.28 .03 10.82 .08 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -20.2810.82 21 34 43 .3 .5 Ineffective Flow 2 num= Sta L Sta R Elev Permanent -77.5 F -264.42 237.3 64.5 403.63 238.6 F

CROSS SECTION

RIVER:	NORTH		
REACH:	MID	RS:	2231

INPUT Description: BRG US

Station E	levatio	n Data	num=	79					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-283.71	239.35	-279.8	239.34	-264.32	239.01	-254.45	238.64	-248.85	238.15
-246.12	238.08	-241.08	237.61	-234.29	237.6	-230.84	237.41	-221.55	237.2
-218.59	236.88	-210.36	236.63	-203.07	236.15	-198.73	236.03	-195.83	235.77
-182	234.89	-176.85	234.36	-174.28	234.3	-169.97	233.91	-158.59	233.58
-151.35	233.37	-142.12	232.96	-134.8	232.86	-125.48	233.11	-122.82	232.69
-118.24	232.47	-112.53	232.83	-107.9	232.62	-100.95	232.61	-96.52	233
-91.94	232.99	-84.1	232.73	-81.65	232.51	-75.91	232.5	-64.92	232.55
-61.34	232.68	-53.35	232.77	-46.86	232.74	-39.19	232.42	-31.34	232.52
-23.07	232.51	-21	232.58	-18.56	229.22	-8.46	226.88	-5.98	226.37
2.36	226.07	11.63	227.93	21.25	229.33	25.56	232.49	26.42	232.45
31.57	233.03	39.01	233.03	52.15	233.26	64.87	233.11	67.97	232.67
79.17	232.67	81.74	232.76	86.59	233	90.78	233.09	95.88	233.08
99.76	233.02	104.18	232.78	110.05	232.5	115.19	232.77	118.66	232.78
126.94	233.24	133.3	233.76	136.25	233.72	142.46	234	145.56	234.35
149.7	234.47	155.91	234.87	158.94	235.31	165.22	235.99	171.42	236.78
174.38	237.84	176.6	237.73	194.43	237.63	220	238.16		
Manning's	n Value	25	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-283.71	.08	-18.56	.03	21.25	.08				
Bank Sta:	Left	Right	Lengths	s: Left C	hannel	Right	Coeff	F Contr.	Expan.
- :	18.56	21.25		86	86	86		.3	.5
Ineffecti	ve Flow	num=	2	2					
Sta L	Sta R	Elev	Permane	ent					
-283.71	-63	237.3	F						
47	220	238.6	F						
BRIDGE									
RIVER: NO	RTH								
REACH: MI	D		RS: 219	92					
INPUT									

Description: Stream Crossing Rules Compliant Structure 66' Clear Span Distance from Upstream XS = 22 Deck/Roadway Width = 33 Weir Coefficient = 2.6 Upstream Deck/Roadway Coordinates num= 18

Sta -340 -190 -41 -21.5 25 160	Hi Cord 237.4 237.6 239.2 239.1 239.04 238.6	Lo Cord 226.07 236.25 226.07	Sta -290 -140 -41 8.5 60 210	Hi Cord 237.3 238.3 239.2 239.1 238.9 238.7	Lo Cord 236.25 236.25	Sta -240 -90 -40 25 110 260	Hi Cord 237.3 239 239.2 239.04 238.7 238.9	Lo Cord 236.25 236.25	
Upstream	Bridge (Cross Sec	tion Dat	ta					
Station B	Elevatior	n Data	num=	79					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-283.71	239.35	-279.8	239.34	-264.32	239.01	-254.45	238.64	-248.85	238.15
-246.12	238.08	-241.08	237.61	-234.29	237.6	-230.84	237.41	-221.55	237.2
-218.59	236.88	-210.36	236.63	-203.07	236.15	-198.73	236.03	-195.83	235.77
-182	234.89	-176.85	234.36	-174.28	234.3	-169.97	233.91	-158.59	233.58
-151.35	233.37	-142.12	232.96	-134.8	232.86	-125.48	233.11	-122.82	232.69
-118.24	232.47	-112.53	232.83	-107.9	232.62	-100.95	232.61	-96.52	233
-91.94	232.99	-84.1	232.73	-81.65	232.51	-75.91	232.5	-64.92	232.55
-61.34	232.68	-53.35	232.77	-46.86	232.74	-39.19	232.42	-31.34	232.52
-23.07	232.51	-21.5	231.5	-17.5	231.5	-8.46	226.88	-5.98	226.37
2.36	226.07	11.63	227.93	21.25	229.33	25.56	232.49	26.42	232.45
31.57	233.03	39.01	233.03	52.15	233.26	64.87	233.11	67.97	232.67
79.17	232.67	81.74	232.76	86.59	233	90.78	233.09	95.88	233.08
99.76	232.07	104 18	232.70	110 05	222 5	115 19	233.03	118 66	232.00
126 94	222.02	122 2	232.70	126 25	232.5	142 46	232.77	145 56	232.70
1/0 7	222.24	155 01	222.70	150.25	225.72	165 22	225 00	171 40	234.33
149.7	204.4/	176 6	204.0/	104 42		202.22	222.99	1/1.42	230.70
1/4.38	237.84	1/0.0	23/./3	194.45	237.03	220	238.10		
Manning's	s n Value	es	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-283.71	.08	-21.5	.03	21.25	.08				
2031/2									
Bank Sta	: Left	Right	Coeff (Contr.	Expan.				
	-21.5	21.25		.3	.5				
Ineffect	ive Flow	num=		2					
Sta L	Sta R	Elev	Permane	ent					
-283.71	-63	237.3	F						
47	220	238.6	F						
Downstrea	am Deck/	/Roadway	Coordina	ates					
num=	18								
Sta	Hi Cord	Lo Cord	Sta	Hi Cord	Lo Cord	Sta	Hi Cord	Lo Cord	
-340	237.4		-290	237.3		-240	237.3		
-190	237.6		-140	238.3		-90	239		
-41	239.2	226.84	-41	239.2	236.25	-40	239.2	236.25	
-21.5	239.1	236.25	8.5	239.1	236.25	25	239.04	236.25	
25	239.04	226.84	60	238.9		110	238.7		

238.9

260

Downstream Bridge Cross Section Data

210

238.7

238.6

160

Station E	levatio	n Data	num=	89					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-343.96	239.18	-331.14	238.4	-313.22	237.93	-288.12	237.13	-275.37	236.7
-267.7	235.63	-256.8	234.78	-242.12	234.53	-228.68	234.12	-223.17	233.69
-201.77	233.56	-179.58	233.68	-170.41	233.64	-157.83	233.63	-152.98	233.57
-150	233.41	-147.3	233.27	-137.67	233.29	-135.3	232.91	-125.71	232.58
-120.9	232.52	-115.43	232.53	-110.3	232.55	-104.12	232.56	-94.88	232.53
-87.68	232.6	-82.54	232.64	-79.46	232.65	-77.04	232.47	-69.18	232.56
-63.01	232.5	-57.39	232.64	-50.67	232.58	-46.08	232.64	-38.34	232.94
-37.31	232.85	-37.05	232.77	-36.28	232.64	-21.5	231.5	-17.5	231.5
-10.78	226.84	0	226.89	6.83	228.1	10.78	230.5	27.45	232.82
36.48	233.14	44.22	233.34	49.04	233.48	53.41	233.46	60.34	233.37
73.71	233.36	76.47	232.77	80.34	232.69	91.18	232.87	100.43	232.96
105.57	233.11	112.77	233.09	125.49	232.85	129.21	233.41	134.35	233.73
136.41	233.67	138.25	233.6	139.98	233.54	143.44	233.59	145.66	233.71
148.59	233.59	150.43	233.6	152.81	233.75	156.87	233.83	160.38	234.29
161.67	234.67	162.96	234.95	165.57	235.09	168.16	235.52	170.75	235.61
172.05	235.71	173.35	235.89	177.24	236.25	179.23	236.28	180.24	236.35
182.27	236.34	183.72	236.48	186.28	237.07	188.91	237.77	189.86	238.2
192.8	239.12	194.47	239.5	197.03	239.88	198.23	239.97		
Manning's	n Vəlu	26	num-	2					
	n Valu	c5 (+5	n Val	ر د+ک	n Val				
-343.96	.08	-21.5	.03	10.78	.08				
515150		21.9	.05	10.70					
Bank Sta:	Left	Right	Coeff (Contr.	Expan.				
	-21.5	10.78		.3	.5				
Ineffecti	ve Flow	num=	-	2					
Sta L	Sta R	Elev	Permane	ent					
-343.96	-56.5	236.3	F						
40.5	198.23	237.6	F						
llnstream	Embankme	ont side (slone		-	1 hor	viz to 1	1 0 verti	cal
Downstrea	m Emhanl	kment side	e slone		=	1 hor	riz to riz	1 0 verti	cal
Maximum a	llowable	submerg	ence for	n wein f		98	12. 00 .		Cur
Flevation	at which	ch weir f	low hegi	ins	=				
Energy he	ad used	in snill	wav desi	ign	=				
Snillway	height i	used in de	≏siøn	-6"	=				
Weir cres	t shape		CJIEN		= Bro	oad Crest	ed		
Number of	Bridge	Coefficie	ent Sets	5 = 1					
Low Flow	Methods	and Data							
En	ergy								
Selected	Low Flow	w Methods	= Highe	est Ener _a	gy Answer	`			
High Flow	Method								
En	ergy On	ly							
Additiona] Bridge	- Paramoti	ers						
	- Di ruge								

Add Friction component to Momentum Do not add Weight component to Momentum Class B flow critical depth computations use critical depth inside the bridge at the upstream end Criteria to check for pressure flow = Upstream energy grade line

BRIDGE OUTPUT Profile #2 YR

E.G. US. (ft)	230.69	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	230.59	E.G. Elev (ft)	230.66
230.55			
Q Total (c+s)	315.00	W.S. Elev (+t)	230.54
230.20	245 00		222 64
Q Bridge (cts)	315.00	Crit W.S. (ft)	228.61
229.18		Mary Chil Duth (Ct)	4 47
Q Weir (cts)		Max Chi Dpth (ft)	4.4/
3.30		V_{0} Total (ft (c)	2 04
WEIF SLA LTL (TL)		Ver Total (+t/s)	2.84
4.70 Wein Sta Rat (ft)		Elow Area (sa ft)	110 01
66 14		TIOW ATEA (SQ TC)	110.91
Weir Submerg		Froude # Chl	0.29
0.53			0.23
Weir Max Depth (ft)		Specif Force (cu ft)	218.67
143.51			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	2.88
2.55			
Min El Prs (ft)	236.25	W.P. Total (ft)	40.13
27.65			
Delta EG (ft)	0.29	Conv. Total (cfs)	11046.0
5860.0			
Delta WS (ft)	0.34	Top Width (ft)	38.51
25.91			
BR Open Area (sq ft)	400.49	Frctn Loss (ft)	0.05
0.05			
BR Open Vel (ft/s)	4.76	C & E Loss (ft)	0.07
0.10			
BR Sluice Coet		Shear Total (1b/sq ft)	0.14
0.43	- 1		0.40
BK SEI METNOO	Energy only	Power lotal (10/ft s)	0.40
2.00			

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #5 YR

E.G. US. (ft)	231.77	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	231.62	E.G. Elev (ft)	231.74
231.59			
Q lotal (c+s)	520.00	W.S. Elev (+t)	231.56
231.07	F30 00		220 21
Q Bridge (CTS)	520.00	Crit W.S. (Tt)	229.31
0 Wein (cfs)		May (b] Doth (ft)	5 19
4 23		Max chi bpth (10)	5.49
Weir Stalft (ft)		Vel Total (ft/s)	3.42
5.73			5.12
Weir Sta Rgt (ft)		Flow Area (sg ft)	152.07
90.73			
Weir Submerg		Froude # Chl	0.33
0.57			
Weir Max Depth (ft)		Specif Force (cu ft)	380.34
258.35			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	3.32
2.86			
Min El Prs (ft)	236.25	W.P. Total (ft)	48.07
33.88			
Delta EG (ft)	0.38	Conv. Total (cfs)	16592.0
9258.6			
Delta WS (ft)	0.46	Top Width (ft)	45.87
31.74			
BR Open Area (sq ft)	400.49	Frctn Loss (+t)	0.05
0.06	F 70		0.10
BR Upen Vel (tt/s)	5.73	C & E LOSS (TT)	0.10
0.15 PR Sluice Coof		Shaan Tatal (lh/cg ft)	0 10
BR STUICE COET		Shear Total (10/Sq Ft)	0.19
RR Sal Mathod		Power Total $(lh/f+c)$	0 66
	LICE BY UILY	FOWER FOLAT (ID/ICS)	0.00
J.02			

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #10 YR

E.G. US. (ft)	232.54	Element	Inside BR US
Inside BR DS			
W.S. US. (+t)	232.34	E.G. Elev (+t)	232.51
(cfs)	690 00	$W S E \log (ft)$	222.28
231 73	090.00	W.S. LIEV (10)	252.20
0 Bridge (cfs)	690.00	Crit W.S. (ft)	229.72
230.47			
Q Weir (cfs)		Max Chl Dpth (ft)	6.21
4.89			
Weir Sta Lft (ft)		Vel Total (ft/s)	3.70
6.00			
Weir Sta Rgt (ft)		Flow Area (sq ft)	186.29
114.94			
Weir Submerg		Froude # Chl	0.27
0.60			500.05
Weir Max Depth (ft)		Specif Force (cu ft)	528.95
Min El Wain Elaw (ft)	סכ דכר	Hudn Donth (ft)	2 00
2 60	257.50	Hydr Depth (Tt)	5.90
Min Fl Prs (ft)	236.25	W.P. Total (ft)	50.51
46.46	250.25		50.51
Delta EG (ft)	0.42	Conv. Total (cfs)	22839.8
11721.0			
Delta WS (ft)	0.50	Top Width (ft)	47.72
44.13			
BR Open Area (sq ft)	400.49	Frctn Loss (ft)	0.05
0.06			
BR Open Vel (ft/s)	6.00	C & E Loss (ft)	0.12
0.17			
BR Sluice Coef		Shear Total (1b/sq ft)	0.21
0.54	- 1		0.70
BK SEL METHOD	Energy only	Power lotal (ID/ft s)	0.78
3.21			

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #25 YR

E.G. US. (ft)	233.40	Element	Inside BR US
Inside BR DS			
W.S. US. (+t)	233.15	E.G. Elev (+t)	233.37
233.20	020.00		222.40
Q IOTAL (CTS)	920.00	W.S. Elev (+t)	233.10
232.52	020.00	$C_{n+1} \cup C_{n+1}$	220.22
Q Bridge (CTS)	920.00	CFIL W.S. (+L)	250.25
231.10		May $Chl Dp+h (f+)$	2 0 2
5 68		Max chi open (10)	7.05
Weir Stalft (ft)		Vel Total (ft/s)	3 90
5.91			5.50
Weir Sta Rgt (ft)		Flow Area (sg ft)	236.17
155.80			
Weir Submerg		Froude # Chl	0.28
0.49			
Weir Max Depth (ft)		Specif Force (cu ft)	737.63
526.03			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	3.58
2.61			
Min El Prs (ft)	236.25	W.P. Total (ft)	70.27
62.13			
Delta EG (ft)	0.42	Conv. Total (cfs)	30870.5
16847.7			
Delta WS (ft)	0.51	Top Width (ft)	66.00
59.68			0.05
BR Open Area (sq ft)	400.49	Frcth Loss (ft)	0.05
0.05	F 01		0.10
BR Open Ver (TC/S)	5.91	C & E LOSS (TC)	0.12
PR Sluice Coof		Shaap Tatal (lb/cg ft)	A 10
		Shear focar (10/54 fc)	0.19
BR Sel Method	Energy only	Power Total (1h/ft c)	Q 73
2.76	LICE BY ONLY	· • • • • • • • • • • • • • • • • • • •	0.75

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance)

is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #50 YR

E.G. US. (ft)	234.01	Element	Inside BR US
Inside BR DS		/ ())	
W.S. US. (+t)	233.74	E.G. Elev (+t)	233.98
233.82	1100.00		
Q Total (cfs)	1100.00	W.S. Elev (ft)	233.68
233.11			
Q Bridge (cfs)	1100.00	Crit W.S. (ft)	230.59
231.70			
Q Weir (cfs)		Max Chl Dpth (ft)	7.61
6.27			
Weir Sta Lft (ft)		Vel Total (ft/s)	4.01
5.69			
Weir Sta Rgt (ft)		Flow Area (sq ft)	274.36
193.22			
Weir Submerg		Froude # Chl	0.28
0.47			
Weir Max Depth (ft)		Specif Force (cu ft)	916.72
668.66			
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	4.16
2.93			
Min El Prs (ft)	236.25	W.P. Total (ft)	71.43
69.35			
Delta EG (ft)	0.41	Conv. Total (cfs)	37339.2
21431.0			
Delta WS (ft)	0.52	Top Width (ft)	66.00
66.00			
BR Open Area (sq ft)	400.49	Frctn Loss (ft)	0.05
0.05			
BR Open Vel (ft/s)	5.69	C & E Loss (ft)	0.12
0.17			
BR Sluice Coef		Shear Total (lb/sq ft)	0.21
0.46			
BR Sel Method	Energy only	Power Total (lb/ft s)	0.83
2.61		· · · · ·	

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #100 YR

E.G. US. (ft)	234.68	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	234.39	E.G. Elev (ft)	234.65
234.48	4000.00		
Q lotal (c+s)	1330.00	W.S. Elev (+t)	234.29
233./1	1220.00		224 02
Q Bridge (CTS)	1330.00	Crit W.S. (ft)	231.02
232.18		May Ch Doth $(f+)$	0 11
Q WEIF (CIS)		Max Chi Dpth (Tt)	0.22
Wein Stalft (ft)		Vel Total (ft/s)	1 22
5 71			4.22
Weir Sta Røt (ft)		Flow Area (sg ft)	314,91
233.04			514.51
Weir Submerg		Froude # Chl	0.29
0.47			
Weir Max Depth (ft)		Specif Force (cu ft)	1142.57
853.92		,	
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	4.77
3.53			
Min El Prs (ft)	236.25	W.P. Total (ft)	72.66
70.56			
Delta EG (ft)	0.43	Conv. Total (cfs)	44802.8
26713.6			
Delta WS (ft)	0.54	Top Width (ft)	66.00
66.00			
BR Open Area (sq ft)	400.49	Frctn Loss (ft)	0.05
0.05			
BR Open Vel (+t/s)	5./1	C & E Loss (+t)	0.12
0.18			0.04
BR SIUICE COET		Snear lotal (10/sq ft)	0.24
U.JI PR Sal Mathad	Enongy only	Powon Total (lb/f+ c)	1 01
	Energy only	FOWER TOLAT (ID/FL S)	1.01
L,JL			

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #200 YR

E.G. US. (ft)	235.15	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	234.82	E.G. Elev (ft)	235.11
234.92			
Q Total (cfs)	1540.00	W.S. Elev (ft)	234.70
234.04			
Q Bridge (cfs)	1540.00	Crit W.S. (ft)	231.38
232.62			
Q Weir (cfs)		Max Chl Dpth (ft)	8.63
7.20			4 50
Weir Sta Ltt (tt)		Vel lotal (+t/s)	4.50
6.05			241 07
Weir Stargt (Tt)		Flow Area (sq ft)	341.87
204.40		Enoudo # Chl	0.21
0 50			0.51
Weir Max Depth (ft)		Specif Force (cu ft)	1324.95
1001.67		Specifi foree (ed fe)	1921.99
Min El Weir Flow (ft)	237.38	Hvdr Depth (ft)	5.18
3.86		y	
Min El Prs (ft)	236.25	W.P. Total (ft)	73.48
71.21		· · /	
Delta EG (ft)	0.49	Conv. Total (cfs)	50084.7
29776.9			
Delta WS (ft)	0.63	Top Width (ft)	66.00
66.00			
BR Open Area (sq ft)	400.49	Frctn Loss (ft)	0.05
0.05			
BR Open Vel (ft/s)	6.05	C & E Loss (ft)	0.14
0.21			
BR Sluice Coef		Shear Total (lb/sq ft)	0.27
0.60			
BR Sel Method	Energy only	Power Total (lb/ft s)	1.24
3.61			
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than

1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

BRIDGE OUTPUT Profile #500 YR

E.G. US. (ft)	235.86	Element	Inside BR US
Inside BR DS			
W.S. US. (ft)	235.47	E.G. Elev (ft)	235.80
235.57	1000 00		225 20
Q IOTAL (CTS)	1880.00	W.S. Elev (Ht)	235.29
$\begin{array}{c} 254.49 \\ 0 \text{ Bridge (cfs)} \end{array}$	1880 00	Crit W S (ft)	232 00
233.24	1000.00		252.00
0 Weir (cfs)		Max Chl Doth (ft)	9.22
7.65			
Weir Sta Lft (ft)		Vel Total (ft/s)	4.93
6.62			
Weir Sta Rgt (ft)		Flow Area (sq ft)	381.19
284.09			
Weir Submerg		Froude # Chl	0.33
0.53			
Weir Max Depth (ft)		Specif Force (cu ft)	1625.93
1246.0/	227 20	Under Dauth (Ct)	F 70
Min Ei Weir Flow (TT)	237.38	Hydr Depth (ft)	5./8
4.50 Min El Doc (ft)	236 25	W P Total (ft)	74 67
72 10	250.25	W.F. IOCAL (IC)	74.07
Delta FG (ft)	0.60	Conv. Total (cfs)	58222.6
34242.3			50
Delta WS (ft)	0.78	Top Width (ft)	66.00
66.00			
BR Open Area (sq ft)	400.49	Frctn Loss (ft)	0.05
0.06			
BR Open Vel (ft/s)	6.62	C & E Loss (ft)	0.17
0.26			
BR Sluice Coef		Shear Total (lb/sq ft)	0.33
0./4	F		
BK SEI METNOO	Energy only	Power lotal (ID/ft s)	1.64
4.91			

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used. CROSS SECTION **RIVER: NORTH** REACH: MID RS: 2145 INPUT Description: BRG DS Station Elevation Data num= 90 Sta Elev Sta Elev Sta Elev Sta Sta Elev Elev -343.96 239.18 -331.14 238.4 - 313.22 237.93 - 288.12 237.13 -275.37 236.7 235.63 -256.8 234.78 -242.12 234.53 -228.68 234.12 -223.17 233.69 -267.7 -201.77 233.56 -179.58 233.68 -170.41 233.64 -157.83 233.63 -152.98 233.57 -150 233.41 -147.3 233.27 -137.67 233.29 -135.3 232.91 -125.71 232.58 -120.9 232.52 -115.43 232.53 -110.3 232.55 -104.12 232.56 -94.88 232.53 232.64 232.47 -87.68 232.6 -82.54 -79.46 232.65 -77.04 -69.18 232.56 -63.01 232.5 -57.39 232.64 -50.67 232.58 -46.08 232.64 -38.34 232.94 -37.31 232.85 -37.05 232.77 -36.28 232.64 -27.88 -23.91 230 227.46 -18.08 227.97 -10.78 226.84 226.89 6.83 228.1 10.78 230.5 0 27.45 232.82 36.48 233.14 44.22 233.34 49.04 233.48 53.41 233.46 60.34 233.37 73.71 233.36 76.47 232.77 80.34 232.69 91.18 232.87 100.43 232.96 105.57 233.11 112.77 233.09 125.49 129.21 232.85 233.41 134.35 233.73 136.41 233.67 138.25 233.6 139.98 233.54 143.44 233.59 148.59 233.59 150.43 145.66 233.71 233.6 152.81 233.75 156.87 233.83 234.29 160.38 161.67 234.67 162.96 234.95 165.57 235.09 168.16 235.52 170.75 235.61 172.05 235.71 235.89 177.24 236.25 179.23 236.28 173.35 180.24 236.35 182.27 236.34 183.72 236.48 186.28 237.07 188.91 237.77 189.86 238.2 192.8 239.12 194.47 239.5 197.03 239.88 198.23 239.97

Manning's n Values

num=

3

Sta -343.96	n Val .08	Sta -27.88	n Val .03	Sta 10.78	n Val .08				
Bank Sta:	Left	Right	Lengths	: Left C	hannel	Right	Coeff	Contr.	Expan.
-	27.88	10.78	_	12	40	58		.3	.5
Ineffecti	ve Flow	num=	2						
Sta L	Sta R	Elev	Permane	nt					
-343.96	-56.5	236.3	F						
40.5	198.23	237.6	F						
CROSS SEC	TION								
RIVER: NO	RTH								
REACH: MI	D		RS: 210	6					
INPUT									
Descripti	on:								
Station E	levatio	n Data	num=	89					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-368.67	239.28	-356.61	238.52	-346	238.04	-320.92	237.18	-309.65	236.83
-305.9	236.61	-298.38	235.9	-292.12	234.7	-289.37	234.58	-285.85	234.11
-279.15	233.95	-266.93	233.85	-254.58	233.69	-246.57	233.6	-229.27	234.06
-220.73	234.25	-204.14	234.03	-197.66	233.48	-192.22	233.44	-187.53	233.63
-179.51	233.73	-174.23	233.44	-159.79	233.36	-153.61	233.23	-149.49	233.35
-140.86	232.55	-134.31	232.51	-131.63	232.49	-124.11	232.51	-121.53	232.72
-110.33	232.87	-87.66	233.04	-84.57	232.84	-77.36	232.78	-73.85	232.49
-65	232.63	-60.88	232.58	-55.94	232.58	-50.57	232.87	-35.19	232.82
-34.82	232.82	-28.12	232.84	-27.88	229.92	-23.91	227.38	-10.78	226.76
0	226.81	6.83	228.02	10.78	230.42	10.79	232.22	14.14	232.59
20.18	232.94	26.69	233.4	32.48	233.17	33.92	232.85	38.96	232.75
41.17	233.76	44.32	234.21	55.65	233.76	61.76	232.93	68.47	232.61
71.15	233.65	73.99	233.84	80.54	233.56	82.68	233.05	89.44	232.85
100.66	232.71	106.03	232.85	108.71	233.3	115.51	233.11	120.79	233.3
124.81	233.73	129.99	233.05	134.2	232.77	142.25	232.71	151.23	232.62
160.88	232.47	167.64	232.48	171.76	232.56	183.09	233.7	188.06	233.38
196.61	234.01	198.54	234.47	209.16	234.85	213.98	236.52	218.81	236.92
224.08	237.66	230.4	238.81	232.83	239.53	239.37	240.5		
Manning's	n Value	es	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-368.67	.08	-27.88	.03	10.78	.08				
Bank Sta:	Left	Right	Lengths	: Left C	hannel	Right	Coeff	Contr.	Expan.
- 3	27.88	10.78		158	138	114		.1	.3
Ineffecti	ve Flow	num=	2						
Sta L	Sta R	Elev	Permane	nt					
-368.67	-76.5	236.3	F						
60.5	239.37	237.6	F						

RIVER: NORTH REACH: MID RS: 1967

INPUT

Description:

Station E	levatio	n Data	num=	70					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-283.07	237.43	-271.74	237.1	-264.18	236.45	-255.05	236.32	-245.05	234.7
-228.09	233.68	-216.45	233.42	-208.48	233.81	-202.06	233.83	-185.22	233.11
-179.73	232.64	-174.45	232.74	-160.59	232.39	-154.65	232.39	-148.27	232.42
-143.01	232.43	-135.85	232.39	-131.42	232.47	-119.02	232.37	-114.35	232.69
-108.08	232.85	-100.54	232.76	-94.38	232.79	-85.69	232.67	-74.95	232.75
-67.78	232.83	-57.03	232.91	-51.27	232.83	-46.29	232.65	-34.64	232.43
-28.17	232.76	-28.16	229.1	-14.06	227.3	3.74	226.3	21.94	227
29.94	227.9	30.34	232.84	36.11	232.82	39.58	233.06	42.66	232.81
54.02	232.68	67.45	232.81	77.3	233.33	84.47	233.3	99.79	233.36
105.79	233.09	115.02	233.18	127.5	233	133.86	233.56	153.58	233.73
157.41	232.5	168.05	232.68	174.8	232.51	180.4	232.54	189.67	232.41
204.54	232.65	210.09	232.93	214	233.02	224.46	233.64	228.29	233.89
233.08	234.58	237.87	235.57	241.7	236.01	246.49	237.22	252.24	237.9
258.94	239.69	263.73	240.04	268.52	241.19	276.21	242.46	283.81	243.36
Manning's	n Value	es	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-283.07	.08	-28.16	.03	29.94	.08				
Bank Sta:	Left	Right	Lengths	s: Left C	hannel	Right	Coeff	Contr.	Expan.
-	28.16	29.94		130	125	120		.1	.3
Ineffecti	ve Flow	num=	2	2					
Sta L	Sta R	Elev	Permane	ent					
-283.07	-145.5	236.3	F						
129.5	283.81	237.6	F						
CROSS SEC	TION								

RIVER: NORTH REACH: MID RS: 1840

INPUT Description: Station Elevation Data 75 num= Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -435.01 237.42 -427.17 237.34 -419.59 236.36 -414.59 236.1 -412.09 235.47 -404.6 234.52 -397.1 234.21 -394.61 233.74 -385.86 233.62 -382.14 233.23 -376.03 233.28 -367.57 232.37 -353.81 232.86 -350.33 233.37 -328.63 233.36 -324.8 232.82 -318.9 232.59 -308.05 232.53 -300.55 232.39 -291.62 232.45

-285.24 232.68 -282.32 233.1 -271.28 232.29 -259.64 232.25 -250.12 232.45 232.43 -227.9 232.39 -221.55 232.35 -212.49 232.48 -206.75 232.32 -236.37 -197.1 232.52 -192.99 233.39 -177.28 233.45 -168.62 233.49 -162.73 233.49 -143.7 233.35 -137.66 233.29 -131.87 232.94 -151.76 233.51 -124.9 232.44 232.52 -108.89 233.24 -102.95 233.2 -92.34 232.92 -86.56 232.45 -118.18-79.23 232.68 -69.07 232.68 -59.54 232.84 -50.81 232.56 -39.1 232.62 -31.35 232.57 -23.1 233 -21.65 228.5 -14.55 226.8 -4.35 226.7 5.05 227.4 16.65 229.5 18.15 232.6 27.98 233.21 35.76 233.32 53.27 233.37 60.5 232.86 67.54 232.96 70.21 233.54 78.21 233.36 94.12 232.94 107.74 232.72 119.53 233.09 135.32 233.34 150 233.97 171.76 238.39 178.01 182.29 157.14 234.77 165.49 237 240.24 240.92 Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val -435.01 .08 -21.65 .03 16.65 .08 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -21.65 16.65 295 340 .3 235 .1 Ineffective Flow 2 num= Sta R Elev Permanent Sta L -435.01 -208 236.3 F F 192 182.29 237.6 CROSS SECTION **RIVER: NORTH** REACH: MID RS: 1545 INPUT Description: Station Elevation Data num= 65 Sta Elev Elev Elev Sta Elev Sta Elev Sta Sta -480.73 237.79 -466.57 236.33 -462.82 234.54 -447.81 234.36 -431.38 233.55 -409.46 233.27 -388.5 233.11 -370.86 232.95 -343.2 232.97 -325.64 232.41 232.36 232.29 -273.64 232.2 -248.51 232.53 -243.41 -311.62 -295.8 232.27 -232.05 232.35 -216.44 232.45 -201.73 232.68 -190.36 232.67 -182.25 232.57 232.67 -132.62 232.57 -123.42 232.5 -85.97 233.02 -69.1 -162.4 233.43 -55.42 233.75 -26.16 233.77 -21.65 227.91 -14.55 226.21 -4.35 226.11 5.05 226.81 16.65 228.91 18.05 232.67 18.95 232.77 20.43 233.31 85.45 232.73 104.51 41.64 233.03 57.37 232.35 66.05 232.25 232.93 138.05 233.2 162.05 232.43 186.04 232.4 215.49 232.34 228.79 232.38 232.28 323.72 232.37 232.55 239.13 259.3 285.83 232.8 340.54 232.8 232.82 376.77 232.86 400.77 233.06 408.92 232.93 354.88 424.77 233.07 235.77 467.72 500.68 237.23 442.46 234.51 450.83 236.88 529.61 237.25 534.61 238.37 552.4 238.72 555.36 239.27 583.92 241.84 594.56 241.83 Manning's n Values num= 3 n Val Sta Sta n Val Sta n Val -480.73 .08 -21.65 .03 16.65 .08

Lengths: Left Channel Bank Sta: Left Right Right Coeff Contr. Expan. -21.65 16.65 285 205 250 .1 .3 Ineffective Flow num= 2 Sta R Elev Sta L Permanent -480.73 -355.5 236.3 F F 399.5 594.56 237.6 CROSS SECTION **RIVER: NORTH** REACH: MID RS: 1295 INPUT Description: Station Elevation Data num= 73 Sta Elev Sta Elev Elev Sta Elev Sta Elev Sta 238.51 -388.15 237.61 -381.89 234.7 -376.88 -403.24 238.81 - 394.41 234.48 -374.37234.03 -364.28 233.38 -358.94 233.43 -346.74 232.37 -339.31 232.43 -330.88 232.35 -319.27 232.08 -312.17 232.85 -301.96 232.88 -295.47 233.14 233.11 -272.93 -274.85 232.7 - 261.39 232.42 - 248.92 232.44 - 237.14 232.38 232.31 -219.97 232.81 -212.39 233.09 -197.78 233.18 -195.27 -226.65 232.85 -189.99 232.66 -185.25 232.51 -178.99 232.54 -165.21 232.45 -161.46 232.91 233.27 -137.66 232.97 -121.38 232.6 -114.57 232.37 -107.72 -151.44 232.38 -94.36 232.18 -87.7 232.32 -82.38 232.3 -61.66 232.5 -53.99 232.55 -48.57 232.27 -40.69 232.21 -35.48 232.38 -22.95 232.21 -21.65 227.41 -14.55 225.71 -4.35 225.61 5.05 226.31 16.65 228.41 17.86 232.19 29.39 232.55 43.58 232.42 49.79 233 55.11 233.08 67.61 232.91 84.38 232.69 90.51 232.4 98.7 232.09 113.93 232.18 123.61 232.28 133.55 232.74 145.11 233.19 156.54 233.35 170.45 234.27 184.12 237.66 186.22 238.49 210.45 242.19 219.87 242.61 227.23 196.33 240.78 242.67 234.59 243.13 243.65 243.09 255.61 243.24 Manning's n Values 3 num= Sta Sta n Val Sta n Val n Val -403.24 .08 -21.65 .08 .03 16.65 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -21.65 16.65 295 295 295 .3 .1 CROSS SECTION **RIVER: NORTH** REACH: MID RS: 1000 INPUT Description: DS LIMIT Station Elevation Data num= 84

Sta	Elev								
-177.41	241.46	-169.62	241.51	-163.4	241.44	-159.61	241.06	-152.07	240.44
-150.81	240.24	-147.03	240	-144.52	239.59	-135.7	238.75	-128.16	237.51
-121.86	235.95	-119.58	235.47	-113.04	234.52	-110.53	234.42	-105.69	233.81
-104.77	233.57	-101.17	233.28	-98.3	233.45	-93.71	233.07	-91.87	233.08
-89.1	233.38	-86.34	233.26	-81.73	232.64	-78.96	232.67	-73.43	232.51
-69.74	232.57	-67.19	232.72	-64.07	233.31	-61.34	232.72	-59.04	232.58
-52.8	232.5	-46.7	232.03	-43.33	231.97	-37.15	232.06	-33.8	232.41
-31.03	232.44	-22.39	232.49	-21.65	226.82	-14.55	225.12	-4.35	225.02
5.05	225.72	16.65	227.82	19.66	232.91	43.94	233.14	49.16	232.96
53.77	232.89	56.53	232.78	62.44	232.88	67.59	232.58	69.23	232.51
77.73	232.18	79.58	232.36	82.32	232.4	83.78	232.82	86.03	233.14
89.72	232.27	93.4	232.14	95.41	232.42	98.93	232.52	106.31	232.78
112.23	233.27	117.48	233.74	122.52	234.41	130.8	235.42	138.63	236.68
140.65	236.93	144.68	237.85	152.74	238.44	157.01	238.78	158.15	239.09
160.79	239.29	168.57	240.27	170.86	240.7	172.88	240.88	175.09	241.39
181.6	241.8	182.95	241.88	188.12	241.93	193.89	242.12	198.54	242.14
206.35	242.5	208.13	242.52	212.87	242.28	217.74	242.33		

Manni	ing's	n Valu	es	num=	3				
	Sta	n Val	Sta	n Val	Sta	a n Val			
-177	7.41	.08	-21.65	.03	16.65	.08			
Bank	Sta:	Left	Right	Lengths:	Left	Channel	Right	Coeff Contr.	Expan.
	-2	21.65	16.65		0	0	0	.1	.3

SUMMARY OF MANNING'S N VALUES

River:NORTH

	Reach F	River Sta.	n1	n2	n3
MID		2520	.08	.03	.08
MID		2348	.08	.03	.08
MID		2265	.08	.03	.08
MID		2231	.08	.03	.08
MID		2192	Bridge		
MID		2145	.08	.03	.08
MID		2106	.08	.03	.08
MID		1967	.08	.03	.08
MID		1840	.08	.03	.08
MID		1545	.08	.03	.08
MID		1295	.08	.03	.08
MID		1000	.08	.03	.08

SUMMARY OF REACH LENGTHS

River: NORTH

	Reach	River Sta.	Left	Channel	Right
MID		2520	185	172	163
MID		2348	80	82	82
MID		2265	21	34	43
MID		2231	86	86	86
MID		2192	Bridge		
MID		2145	12	40	58
MID		2106	158	138	114
MID		1967	130	125	120
MID		1840	235	295	340
MID		1545	205	250	285
MID		1295	295	295	295
MID		1000	0	0	0

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: NORTH

Reach	River S	Sta. Contr.	Expan.
MID	2520	.1	.3
MID	2348	.1	.3
MID	2265	.3	.5
MID	2231	.3	.5
MID	2192	Bridge	
MID	2145	.3	.5
MID	2106	.1	.3
MID	1967	.1	.3
MID	1840	.1	.3
MID	1545	.1	.3
MID	1295	.1	.3
MID	1000	.1	.3

Profile Output Table - Standard Table 1

Reach	River Sta	Profil	le Q Total	Min Ch El	W.S. Elev	Crit W.S.
E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	
			(cfs)	(ft)	(ft)	(ft)
(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		

MID	2520	2 YR	315.00	226.70	230.85	228.65
230.94	0.000522	2.45	130.06	43.83	0.24	
MID	2520	5 YR	520.00	226.70	231.92	229.24
232.06	0.000549	3.03	179.42	48.03	0.26	
MID	2520	10 YR	690.00	226.70	232.67	229.66
232.85	0.000561	3.41	219.00	69.34	0.27	
MID	2520	25 YR	920.00	226.70	233.52	230.14
233.72	0.000550	3.74	407.10	397.12	0.27	
MID	2520	50 YR	1100.00	226.70	234.13	230.48
234.31	0.000453	3.63	678.01	461.70	0.25	
MID	2520	100 YR	1330.00	226.70	234.81	230.88
234.95	0.000365	3.47	1001.44	494.95	0.23	
MID	2520	200 YR	1540.00	226.70	235.29	231.23
235.41	0.000329	3.44	1242.57	520.59	0.22	
MID	2520	500 YR	1880.00	226.70	235.99	231.76
236.10	0.000282	3.38	1607.91	561.92	0.21	
мтр	2240	2 VP	215 00	226 40	220 65	220 Q1
220 01	0 00000	2 11	97.96	220.40	250.05	220.91
230.01 MTD	2240	5.20 5 VP	57.00	22.20	221 67	220 61
021 02	2340 0 001015		122 21	220.40	231.07	229.01
MTD	2248	4.04 10 VP	500 00	226 40	222 20	230 01
020 70	2J40 0 001071		150 12	220.40	252.55	230.04
252.70 MTD	2348	4.55 25 VP	139.13	226 40	0.50 222 21	220 57
222 EQ	2340 0 001012		920.00 205 52	220.40	255.21	250.57
255.56 MTD	2348	4.90 50 VP	1100 00	226 10	222 88	220 01
02/ 10	0 00000		162 24	516 12	255.00	230.94
234.19 MTD	2248	4.02 100 VP	1330 00	226 40	22/ 50	221 /1
234 82	2340 0 000681	100 11	1330.00	572 05	234.39	231.41
234.03 MTD	2240	4.00 200 VP	1540 00	22.03	225 00	221 00
22E 22	0 000625	200 IK	1340.00 012 A0	220.40 EQ2 1E	255.00	231.80
255.52 MTD	2200025	4.07 500 VP	1990 00	225.10	225 00	222 10
236 02	0 000555	1 68	1022 22	503 00	255.00 0 20	232.40
250.02	0.000000	4.08	1077.72	22.25	0.25	
	2265		245 00	226.45	220 50	222 66
MID	2265	2 YR	315.00	226.15	230.59	228.66
230.73	0.000823	3.08	102.77	32.02	0.30	222.25
MID	2265	5 YR	520.00	226.15	231.60	229.35
231.84	0.000912	3.88	135.67	32.//	0.33	
MID	2265	10 YR	690.00	226.15	232.31	229.78
232.62	0.000962	4.42	159.17	33.29	0.35	
MID	2265	25 YR	920.00	226.15	233.11	230.31
233.49	0.001023	5.02	219.08	251.94	0.37	
MID	2265	50 YR	1100.00	226.15	233.70	230.69
234.11	0.000978	5.24	303.16	441.93	0.37	004 4 5
MID	2265	100 YR	1330.00	226.15	234.35	231.14
234.77	0.000935	5.46	395.07	554.82	0.36	
MID	2265	200 YR	1540.00	226.15	234.79	231.55

235.24	0.000954	5.75	457.88	568.10	0.37	
MID	2265	500 YR	1880.00	226.15	235.45	232.15
235.94	0.000973	6.14	551.37	584.39	0.38	
MID	2231	2 YR	315.00	226.07	230.59	228.55
230.69	0.000589	2.54	125.70	42.52	0.25	
MID	2231	5 YR	520.00	226.07	231.62	229.20
231.77	0.000615	3.14	170.64	44.67	0.27	
MID	2231	10 YR	690.00	226.07	232.34	229.58
232.54	0.000630	3.54	203.55	46.19	0.28	
MID	2231	25 YR	920.00	226.07	233.15	230.03
233.40	0.000660	4.01	268.16	256.15	0.30	
MID	2231	50 YR	1100.00	226.07	233.74	230.35
234.01	0.000644	4.23	333.52	299.74	0.30	
MID	2231	100 YR	1330.00	226.07	234.39	230.74
234.68	0.000643	4.51	404.00	323.87	0.30	
MID	2231	200 YR	1540.00	226.07	234.82	231.07
235.15	0.000676	4.82	452.20	336.54	0.31	
MID	2231	500 YR	1880.00	226.07	235.47	231.59
235.86	0.000720	5.26	523.72	351.62	0.33	
MID	2192		Bridge			
MID	2145	2 YR	315.00	226.84	230.24	228.77
MID 230.40	2145 0.001166	2 YR 3.14	315.00 100.55	226.84 39.01	230.24 0.34	228.77
MID 230.40 MID	2145 0.001166 2145	2 YR 3.14 5 YR	315.00 100.55 520.00	226.84 39.01 226.84	230.24 0.34 231.16	228.77 229.34
MID 230.40 MID 231.39	2145 0.001166 2145 0.001176	2 YR 3.14 5 YR 3.82	315.00 100.55 520.00 139.50	226.84 39.01 226.84 47.09	230.24 0.34 231.16 0.36	228.77 229.34
MID 230.40 MID 231.39 MID	2145 0.001166 2145 0.001176 2145	2 YR 3.14 5 YR 3.82 10 YR	315.00 100.55 520.00 139.50 690.00	226.84 39.01 226.84 47.09 226.84	230.24 0.34 231.16 0.36 231.84	228.77 229.34 229.75
MID 230.40 MID 231.39 MID 232.12	2145 0.001166 2145 0.001176 2145 0.001131	2 YR 3.14 5 YR 3.82 10 YR 4.22	315.00 100.55 520.00 139.50 690.00 174.09	226.84 39.01 226.84 47.09 226.84 54.17	230.24 0.34 231.16 0.36 231.84 0.36	228.77 229.34 229.75
MID 230.40 MID 231.39 MID 232.12 MID	2145 0.001166 2145 0.001176 2145 0.001131 2145	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84	230.24 0.34 231.16 0.36 231.84 0.36 232.64	228.77 229.34 229.75 230.24
MID 230.40 MID 231.39 MID 232.12 MID 232.97	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 0.37 \\ 0.37 \\ 0.37 \\ 0.37 \\ 0.37 \\ 0.00 \\$	228.77 229.34 229.75 230.24
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37$	228.77 229.34 229.75 230.24 230.58
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37$	228.77 229.34 229.75 230.24 230.58
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 233.85 \\ 0.37 \\ $	228.77 229.34 229.75 230.24 230.58 231.00
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14	$\begin{array}{c} 230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 233.85 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.85 \\ 0.37$	228.77 229.34 229.75 230.24 230.58 231.00
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 226.84	$\begin{array}{c} 230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.20 \end{array}$	228.77 229.34 229.75 230.24 230.58 231.00 231.35
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145 0.001041 2145	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.20 \\ 0.39 \\ 234.60 \\ 0.39 \\ 234.60 \\ 0.39 \\ 234.60 \\ 0.39 \\ 234.60 \\ 0.31 \\ 0.39 \\ 234.60 \\ 0.31 \\ 0.31 \\ 0.31 \\ 0.31 \\ 0.31 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.$	228.77 229.34 229.75 230.24 230.58 231.00 231.35
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145 0.001041 2145 0.001127 2145	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84	$\begin{array}{c} 230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.69 \\ 0.42 \end{array}$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID 235.25	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145 0.001041 2145 0.001127 2145 0.001264	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR 6.29	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00 412.92	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84 390.82 226.84 413.33	$\begin{array}{c} 230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.69 \\ 0.42 \end{array}$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID 235.25	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145 0.001041 2145 0.001127 2145 0.001264	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR 6.29	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00 412.92	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84 413.33	$\begin{array}{c} 230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.69 \\ 0.42 \\ \end{array}$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID 235.25	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145 0.001041 2145 0.001127 2145 0.001264	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR 6.29 2 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00 412.92	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84 413.33	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.69 \\ 0.42 \\ 230.21 \\ 0.31 \\ 0.42 \\ 0.31 \\ 0.42 \\ 0.31 \\ 0.42 \\ 0.31 \\ 0.42 \\ 0.31 \\ 0.42 \\ 0.31 \\ 0.42 \\ 0.42 \\ 0.31 \\ 0.42 \\ 0.4$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90 228.53
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID 235.25 MID 235.25	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001064 2145 0.001041 2145 0.001127 2145 0.001264	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR 6.29 2 YR 2.93	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00 412.92 315.00 107.45 520.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84 413.33 226.76 38.34 226.76	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.69 \\ 0.42 \\ 230.21 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31 \\ 231.12 \\ 0.31$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90 228.53
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID 235.25 MID 230.35 MID	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001064 2145 0.001064 2145 0.001041 2145 0.001127 2145 0.001127 2145 0.001264	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR 6.29 2 YR 2.93 5 YR	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00 412.92 315.00 107.45 520.00	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84 413.33 226.76 38.34 226.76	$230.24 \\ 0.34 \\ 231.16 \\ 0.36 \\ 231.84 \\ 0.36 \\ 232.64 \\ 0.37 \\ 233.23 \\ 0.37 \\ 233.85 \\ 0.37 \\ 234.20 \\ 0.39 \\ 234.69 \\ 0.42 \\ 230.21 \\ 0.31 \\ 231.13 \\ 0.37 \\ 0.31 \\ 231.13 \\ 0.37 \\ 0.31 \\ 0.31 \\ 0.31 \\ 0.32 \\ 0.31 \\ 0.31 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.31 \\ 0.31 \\ 0.32 \\$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90 228.53 229.11
MID 230.40 MID 231.39 MID 232.12 MID 232.97 MID 233.60 MID 234.25 MID 234.66 MID 235.25 MID 235.25	2145 0.001166 2145 0.001176 2145 0.001131 2145 0.001101 2145 0.001064 2145 0.001041 2145 0.001041 2145 0.001127 2145 0.001264 2106 0.000932 2106 0.000998	2 YR 3.14 5 YR 3.82 10 YR 4.22 25 YR 4.67 50 YR 4.95 100 YR 5.24 200 YR 5.66 500 YR 6.29 2 YR 2.93 5 YR 3.64	315.00 100.55 520.00 139.50 690.00 174.09 920.00 220.85 1100.00 271.14 1330.00 330.89 1540.00 364.89 1880.00 412.92 315.00 107.45 520.00 142.82	226.84 39.01 226.84 47.09 226.84 54.17 226.84 140.21 226.84 230.90 226.84 382.14 226.84 390.82 226.84 413.33 226.76 38.34 226.76 38.76 32.76	$\begin{array}{c} 230.24\\ 0.34\\ 231.16\\ 0.36\\ 231.84\\ 0.36\\ 232.64\\ 0.37\\ 233.23\\ 0.37\\ 233.85\\ 0.37\\ 233.85\\ 0.37\\ 234.20\\ 0.39\\ 234.69\\ 0.42\\ 230.21\\ 0.31\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.13\\ 0.33\\ 231.23\\ 0.33\\ 231.23\\ 0.33\\ 231.23\\ 0.33\\ 231.23\\ 0.33\\ 231.23\\ 0.33\\ 231.23\\ 0.33\\ 231.23\\ 0.33\\ 0.33\\ 231.23\\ 0.33\\ 0$	228.77 229.34 229.75 230.24 230.58 231.00 231.35 231.90 228.53 229.11

232.07	0.000999	4.08	169.26	38.82	0.34	
MID	2106	25 YR	920.00	226.76	232.60	230.02
232.93	0.001021	4.61	201.17	95.14	0.36	
MID	2106	50 YR	1100.00	226.76	233.19	230.35
233.56	0.000999	4.90	253.82	269.40	0.36	
MID	2106	100 YR	1330.00	226.76	233.80	230.77
234.21	0.000994	5.22	326.07	403.97	0.37	
MTD	2106	200 YR	1540.00	226.76	234,14	231,10
234.61	0.001079	5.64	370.97	468.53	0.38	232120
MTD	2106	500 YR	1880.00	226.76	234,64	231.63
235 20	0 001199	6 24	439 32	494 25	0 41	231.03
233120	01001233	0121		191129	0112	
MID	1967	2 YR	315.00	226.30	230.20	228.02
230.25	0.000302	1.80	175.69	58.29	0.18	
MID	1967	5 YR	520.00	226.30	231.14	228.47
231.22	0.000334	2.26	230.41	58.37	0.20	
MID	1967	10 YR	690.00	226.30	231.84	228.79
231.94	0.000342	2.55	271.43	58.43	0.21	
MID	1967	25 YR	920.00	226.30	232.66	229.16
232.79	0.000353	2.89	328.19	178.86	0.22	
MID	1967	50 YR	1100.00	226.30	233.27	229.42
233.41	0.000342	3.05	451.31	357.32	0.22	
MID	1967	100 YR	1330.00	226.30	233.91	229.73
234.06	0.000329	3.19	624.50	460.27	0.22	
MID	1967	200 YR	1540.00	226.30	234.28	229.98
234.44	0.000347	3.40	727.29	469.08	0.23	
MID	1967	500 YR	1880.00	226.30	234.82	230.37
235.01	0.000372	3.70	875.80	480.04	0.24	
MID	1840	2 YR	315.00	226.70	230.00	228.69
230.17	0.001322	3.29	96.10	39.03	0.37	
MID	1840	5 YR	520.00	226.70	230.88	229.28
231.13	0.001323	4.02	130.53	39.73	0.39	
MID	1840	10 YR	690.00	226.70	231.54	229.67
231.85	0.001280	4.46	157.04	40.27	0.39	
MID	1840	25 YR	920.00	226.70	232.30	230.12
232.69	0.001277	5.00	187.91	55.12	0.40	
MID	1840	50 YR	1100.00	226.70	232.88	230.46
233.31	0.001233	5.30	238.38	289.97	0.40	
MID	1840	100 YR	1330.00	226.70	233.51	230.86
233.96	0.001145	5.50	387.23	522.45	0.40	
MID	1840	200 YR	1540.00	226.70	233.90	231.20
234.34	0.001109	5.64	524.76	543.85	0.39	
MID	1840	500 YR	1880.00	226.70	234.50	231.72
234.91	0.001001	5.69	741.27	558.92	0.38	
MTD	1545		200.00	226 44	220 42	220.25
MTD	1545	2 YR	390.00	226.11	229.42	228.32

229.68	0.001996	4.06	96.99	39.66	0.45	
MID	1545	5 YR	630.00	226.11	230.26	228.95
230.63	0.001990	4.91	130.56	40.61	0.47	
MID	1545	10 YR	840.00	226.11	230.89	229.38
231.36	0.001986	5.50	156.38	41.33	0.49	
MID	1545	25 YR	1110.00	226.11	231.61	229.88
232.20	0.001981	6.14	186.57	42.16	0.50	
MID	1545	50 YR	1330.00	226.11	232.15	230.26
232.82	0.001976	6.59	209.45	42.77	0.51	
MID	1545	100 YR	1600.00	226.11	232.86	230.70
233.52	0.001715	6.68	418.16	567.47	0.48	
MID	1545	200 YR	1850.00	226.11	233.63	231.08
234.02	0.001024	5.60	943.32	830.51	0.38	
MID	1545	500 YR	2230.00	226.11	234.39	231.63
234.63	0.000669	4.86	1511.62	891.55	0.31	
мтр	1205		200.00	225 61	226 02	
MIU 220 19	1295		390.00	223.01	228.92	
229.10 MTD	1205		50.40	20.0/ 225 61	0.45	
MIU 220 12	1295		120.00	225.01	229.70	
230.13	0.002000	4.92	129.09	39.37	0.4/	
	1295	10 YK	840.00	225.61	230.39	
230.86	0.002001	5.52	153.95	39.74	0.49	
MID	1295	25 YK	1110.00	225.61	231.11	
231.70	0.002003	6.17	182.73	40.16	0.50	
MID	1295	50 YR	1330.00	225.61	231.64	
232.33	0.002003	6.63	204.36	40.48	0.51	
MID	1295	100 YR	1600.00	225.61	232.26	
233.05	0.002004	7.14	233.10	98.12	0.52	
MID	1295	200 YR	1850.00	225.61	232.8/	230.57
233.65	0.001/82	7.20	401.12	384.93	0.50	
MID	1295	500 YR	2230.00	225.61	233.91	231.13
234.39	0.001090	6.22	915.66	537.47	0.40	
MID	1000	2 YR	390.00	225.02	228.33	227.23
228.59	0.002004	4.06	96.23	38.80	0.45	
MID	1000	5 YR	630.00	225.02	229.17	227.85
229.54	0.002000	4.92	128.95	39.40	0.47	
MID	1000	10 YR	840.00	225.02	229.80	228.29
230.27	0.002002	5.52	153.84	39.86	0.49	
MID	1000	25 YR	1110.00	225.02	230.52	228.78
231.11	0.002003	6.17	182.72	40.38	0.50	
MID	1000	50 YR	1330.00	225.02	231.05	229.16
231.74	0.002002	6.63	204.51	40.76	0.51	
MID	1000	100 YR	1600.00	225.02	231.67	229.61
232.45	0.002002	7.13	229.57	41.21	0.52	
MID	1000	200 YR	1850.00	225.02	232.19	229.98
233.08	0.002002	7.56	253.50	56.91	0.53	
MID	1000	500 YR	2230.00	225.02	232.90	230.55

233.91	0.002002	8.11	326.78	151.63	0.54

Profile Output Table - Six XS Bridge

Reach	Rive	er Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn
Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl	
				(ft)	(ft)	(ft)	
(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	
MTD	2265	i	2 YR	230.73	230.59	228.66	
0.02	0.02	32.02	0.13	314.86	0.01	3.08	
MID	2265		5 YR	231.84	231.60	229.35	
0.03	0.04	32.77	0.69	519.29	0.02	3.88	
MID	2265		10 YR	232.62	232.31	229.78	
0.03	0.05	33.29	1.46	688.49	0.05	4.42	
MID	2265		25 YR	233.49	233.11	230.31	
0.03	0.07	251.94	3.77	907.12	9.11	5.02	
MID	2265		50 YR	234.11	233.70	230.69	
0.03	0.07	441.93	25.59	1043.58	30.83	5.24	
MID	2265		100 YR	234.77	234.35	231.14	
0.03	0.06	554.82	63.47	1197.99	68.54	5.46	
MID	2265		200 YR	235.24	234.79	231.55	
0.03	0.06	568.10	98.30	1339.15	102.55	5.75	
MID	2265	i i	500 YR	235.94	235.45	232.15	
0.03	0.05	584.39	161.01	1556.04	162.95	6.14	
мтр	2231		2 VR	230 69	230 59	228 55	
0 02	0 01	. 42 52	2 IN 0 17	314 52	0 31	2 54	
MTD	2231	72,92	5 VR	231 77	231 62	2.24	
0.02	0.01	. 44.67	0.76	517.68	1.56	3.14	
MTD	2231		10 YR	232.54	232.34	229.58	
0.02	0.01	46.19	1.56	685.16	3.28	3.54	
MID	2231		25 YR	233.40	233.15	230.03	
0.02	0.01	256.15	9.86	905.86	4.28	4.01	
MID	2231		50 YR	234.01	233.74	230.35	
0.02	0.01	299.74	29.07	1056.57	14.37	4.23	
MID	2231		100 YR	234.68	234.39	230.74	
0.02	0.02	323.87	58.25	1241.32	30.43	4.51	
MID	2231		200 YR	235.15	234.82	231.07	
0.02	0.02	336.54	84.75	1410.10	45.15	4.82	
MID	2231		500 YR	235.86	235.47	231.59	
0.02	0.04	351.62	132.14	1676.16	71.71	5.26	
MID	2192	BR U	2 YR	230.66	230.54	228.61	

0.05	0.07	38.51		314.67	0.33	2.86
MID	2192	BR U	5 YR	231.74	231.56	229.31
0.05	0.10	45.87	0.00	518.17	1.83	3.48
MID	2192	BR U	10 YR	232.51	232.28	229.72
0.05	0.12	47.72	0.13	686.07	3.80	3.81
MID	2192	BR U	25 YR	233.37	233.10	230.23
0.05	0.12	66.00	5.06	908.19	6.74	4.23
MID	2192	BR U	50 YR	233.98	233.68	230.59
0.05	0.12	66.00	14.25	1076.78	8.97	4.50
MID	2192	BR U	100 YR	234.65	234.29	231.02
0.05	0.12	66.00	27.74	1290.65	11.61	4.86
MID	2192	BRU	200 YR	235.11	234.70	231.38
0.05	0.14	66.00	39.63	1486.52	13.85	5.25
MTD	2192	BR II	500 YR	235.80	235.29	232.00
0.05	0.17	66.00	60.50	1802,10	17,40	5.84
0.05	0.17	00.00	00.50	1002.10	17.40	5.04
MTD	2102		2. 1/5	220 55	220.20	220 40
MID	2192		2 YR	230.55	230.20	229.18
0.05	0.10	25.91		315.00	221 07	4.76
	2192		5 YK	231.59	231.07	229.94
0.06	0.15	31.74	10.10	519.48	0.52	5.80
MID	2192	BK D	10 YK	232.34	231.73	230.47
0.06	0.1/	44.13	0.09	685.62	4.29	6.28
MID	2192	BK D	25 YK	233.20	232.52	231.10
0.05	0.18	59.68	4.32	900.72	14.96	6.70
MID	2192	BRD	50 YR	233.82	233.11	231.70
0.05	0.1/	66.00	14.00	1056.75	29.25	6.88
MID	2192	BRD	100 YR	234.48	233./1	232.18
0.05	0.18	66.00	32.55	1250.61	46.84	7.22
MID	2192	BR D	200 YR	234.92	234.04	232.62
0.05	0.21	66.00	46.84	1432.92	60.24	7.81
MID	2192	BR D	500 YR	235.57	234.49	233.24
0.06	0.26	66.00	71.34	1726.41	82.26	8.72
MID	2145		2 YR	230.40	230.24	228.77
0.04	0.01	39.01	0.01	314.99		3.14
MID	2145		5 YR	231.39	231.16	229.34
0.04	0.01	47.09	0.92	518.61	0.47	3.82
MID	2145		10 YR	232.12	231.84	229.75
0.04	0.01	54.17	3.10	683.82	3.08	4.22
MID	2145		25 YR	232.97	232.64	230.24
0.04	0.00	140.21	7.98	901.49	10.53	4.67
MID	2145		50 YR	233.60	233.23	230.58
0.04	0.00	230.90	15.35	1067.64	17.01	4.95
MID	2145		100 YR	234.25	233.85	231.00
0.04	0.00	382.14	35.29	1256.81	37.90	5.24
MID	2145		200 YR	234.66	234.20	231.35
0.04	0.00	390.82	51.56	1433.34	55.10	5.66
MID	2145		500 YR	235.25	234.69	231.90

0.05	0.00	413.33	80.31	1714.25	85.43	6.29
MID	2106		2 YR	230.35	230.21	228.53
0.07	0.03	38.34	0.00	315.00		2.93
MID	2106		5 YR	231.33	231.13	229.11
0.07	0.04	38.76	0.00	520.00	0.00	3.64
MID	2106		10 YR	232.07	231.81	229.53
0.08	0.05	38.82	0.02	689.98	0.00	4.08
MID	2106		25 YR	232.93	232.60	230.02
0.08	0.06	95.14	0.08	919.82	0.10	4.61
MID	2106		50 YR	233.56	233.19	230.35
0.08	0.07	269.40	8.05	1089.56	2.38	4.90
MID	2106		100 YR	234.21	233.80	230.77
0.07	0.08	403.97	31.59	1285.42	12.99	5.22
MID	2106		200 YR	234.61	234.14	231.10
0.08	0.09	468.53	52.23	1463.39	24.38	5.64
MID	2106		500 YR	235.20	234.64	231.63
0.08	0.11	494.25	90.59	1738.95	50.46	6.24

APPENDIX E: Scour Analysis

Sieve Analysis 2018 Underwater Inspection Scour Calculation Worksheet HEC-RAS Velocity Distribution Plots

9/1/2022 INGHAM\40612 TEST BORINGS.GPJ **ONTWARD** S:\MATERIAL

COLLINS ENGINEERS

.

UNDERWATER INSPECTION FORM - NHDOT STATEWIDE 43104 PROJECT

DATE:		8	12/2021			FIELD REP.	KEN MORI	RIDN		
STRUCTURE ID #	/ CITY:	141/127	NOTTING	M		ROAD/HIGH	IWAY #:	NH 152		_
GPS & COORDIN	ATES:	43, 148550	8 -71.11.32	32		WATERWAY	/:	NORTH RS	IVER	
ASSESSMENT TE	AM:	CURTIS C	HENEY P.E.	DREK	GALLAGHER	(DIVER)	DEVAN SACK			
PREVIOUS INSPE	CTION R	EPORT AVAIL	ABLE:		PLANS AVA	ILABLE:	BRIDGE TYPE:			
YES (Date/Origina	ator)	8/10/16, T	ERRACON	NO	YES	NO		IB-C		
ACCESS EN	MBANK.) JONBOAT	BARGE	DIVE BOAT	OTHER:	N				
COMMENTS:	NE	XT TO BA	TOGE							
<u>[RAFFIC</u>	REC.	FISHING	BARGE	PONTOON	N/A)	Other:				
NEATHER	TEMP:	700	WIND:		FAIR	CLOUDY	RAIN			
NATER CONDITI	ONS	TEMP:	690	VISIBILITY:	1'					
CURRENT: ST	RONG	MOD	ERATE	LIGHT	NC	ONE				
BANK (G	RASS	ROCK	GRAVEL	DIRT/MUD	SAND	Other:				
NSPECTION MET	THOD	SSA	SCUBA	WADING			OTHER:			
BRIDGE SUPPOR	T TYPE	MASONRY	REINFORCED	CONC	OPEN WEB	CLOSED WE	B Concrete /	Steel / Timl	ber Piles	
FOUNDATION TY	PE	PILE + CAP	PILE w/o CAP	CAISSON	SPREAD FOO	OTING	PIER FOUNDE	D ON ROCK	OTHER:	UNK.
CROSS SECTIONS	5	X		X			UPSTREAM			
		5'	10'	25'	50'	100'				
		X		X			DOWNSTREAD	N		
SOUNDINGS:		EQUIPMENT	USED:	Leveling roo	D	Digital dept	h finder	OTHER:	HAMMES	<u> </u>
SCOUR SCO	UR POC	KETS OR TROU	JGHS		YES	NO	Notes:			
FOC	TING O	R FOUNDATIC	N ELEMENT EX	KPOSED (YES	NO	Notes: F	DOTING EXA	BSURE, 1	SOTH ABUT
SCO	UR INCR	EASED SINCE	LAST INSPECT	ION	YES	NO	Notes:			
BOTTOM CONDI	TIONS	BOULDERS	COBBLES	GRAVEL	SAND	SILT	CLAY	BEDROCK	OTHER:	
DEBRIS: S	TICKS	TIMBERS	STEEL	TREE LIMBS	CONSTRUCT	TION DEBRIS	WASTE	CONCRETE	TREE	TRASH
OTHER:	_500×					1383				
HEAVY DEBRIS LO	OCATED	AROUND ELE	MENT	YES	NO	ELEMENTS:				
BRIDGE SUBSTR	UCTURE	RATING :		PREVIOUS		CURRENT				
CHANNEL AND C	HANNE	L PROTECTIO	N RATING:	PREVIOUS	6	CURRENT	6			
UNDERMINING :		YES	NO	ELEMENTS						
RECOMMENDAT	IONS :									
SUBSTRUCTURE	S NOT IN	ISPECTED & F	REASON:							

General Notes: FIELD NOTES Note: Inspection is limited from the water line to the mud line. General Notes: Heavy Marine Growth Concrete is generally sound Light Marine Growth	27. NOTTINGHAM	STRUCTURE ID # / CITY: 141/127,	LIND	ENGIN
General Notes: Heavy Marine Growth Light Marine Growth Concrete is generally sound		ection is limited from the water line to the mud line.	FIELD NOTES Note: I	
Concrete is generally sound		Light Marine Growth	Heavy Marine Growth	General Notes:
		Ð	Concrete is generally s	
Masonry: Dry-laid Minor / Moderate / Severe Mortar loss		or / Moderate / Severe Mortar loss	Masonry: Dry-laid	

- 1. The concrete abutments were covered with a thin layer of marine growth (algae).
- 2. Hammer soundings of the concrete were performed entire length and depth of the abutments, unsound concrete was observed on both abutment walls. See number 3 for more details.
- 3. Cracking was observed on both abutment walls on the north end. Efflorescence was observed with no rust staining. Delaminations were found throughout these cracked areas. These areas are approximately 5 feet wide and located above the water line.
- 4. The sheet pile abutment walls were found to be heavily deteriorated. Areas with large holes showed another layer of sheet piling behind the face. Areas where a probe rod could be pushed through the sheet piling showed that it was backfilled with sand. The heavy corrosion of the sheet piling was confined to the east abutment wall.
- 5. Cracking was observed in the concrete portion of the underside of the bridge deck. Efflorescence and rust staining was present. Hammer soundings could not be performed from the water at this time.
- 6. Spalling was found on the upstream corners of the abutment walls. Exposed vertical reinforcing steel was found within the spall on the East abutment wall.
- 7. Light scaling of the concrete was observed.
- 8. The bottom material at the structure consisted mainly of sand, silt, large rocks and tree debris.

		_		
			na	
	Au			
<u></u>				

* W/L REFERENCE, UPSTREAM, MID SPAN, UNDERSIDE OF DECK TO WATER = 4'

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

COMMENTS:

DATE: 10/21/2022

REVISED:

denotes field entered by user or obtained from back-up spreadsheets denotes computed field or standard value

denotes sum or conclusion

SCOUR SUMMARY

STORM	CONTRACTION		FROEHLICH'S		TOTAL CC	MPONENT	NCHRP	VERT. W/
STORIN	LIVE	VERT	LEFT	RIGHT	LEFT	RIGHT	24-20	NCHRP 24-20
100-YR	2.39	N/A	3.66	9.91	6.04	12.29	7.50	N/A
200-YR	2.98	N/A	4.47	10.83	7.46	13.81	8.76	N/A
500-YR	3.99	N/A	5.70	12.21	9.69	16.20	10.67	N/A

HEC-RAS MODEL DATA

FILE: 141-127 Route 125.prj			
PLAN: PR PLAN	XS #	2265	
100-YR: 1330 CFS			1 2 1
200-YR: 1540 CFS	XS #	2231	
500-YR: 1880 CFS	XS #	2192 BR U	

PROJECT NOTES/ASSUMPTIONS

- 1. Full replacement
- 2. Low flow energy only
- 3. Sieve analysis depicts poorly graded sand with D50 ranging from 0.18 to 0.80. The lower limit was used.

i

Ì

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

COMMENTS:

DATE: 10/21/2022

REVISED:

denotes field entered by user or obtained from back-up spreadsheets denotes computed field or standard value denotes sum or conclusion

CONTRACTION SCOUR DETERMINATION

CRITICAL VELOCITY

Ref. HEC-18, page 6.2, Equation 6.1

$$V_c = K_u y^{1/6} (D_{50})^{1/3}$$

If Vc is less than V US of the contraction \rightarrow Live-Bed Scour If Vc is greater than V US of the contraction \rightarrow Clear-Water Scour

VARI	ABLE	STORM EVENT					
		100-YR		500-YR			
K _u		11.17	11.17	11.17			
У	(ft)	7.41	7.97	8.83			
D ₅₀	(mm)	0.18	0.18	0.18			
D ₅₀	(in)	0.007	0.007	0.007			
D ₅₀	(ft)	0.001	0.001	0.001			
V _c	(ft/s)	1.3	1.3	1.3			
V	(ft/s)	5.05	5.21	5.41			
SC	OUR TYPE:	LIVE	LIVE	LIVE			

NOTES:

 K_u = coefficient (English Units)

y₁ = avg depth in US main chl Poorly graded sand - scour samples

V = main chl velocity

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

CONTRACTION SCOUR COMPUTATION

LIVE-BED CONTRACTION

Ref. HEC-18, page 6.10, Equations 6.2 and 6.3

$$\frac{y_2}{y_1} = \left(\frac{Q_2}{Q_1}\right)^{6/7} \left(\frac{W_1}{W_2}\right)^{k_1}$$

 $y_s = y_2 - y_o$

VARI	ABLE	S	TORM EVEN	IT
		100-YR	200-YR	500-YR
K _u	-	0.0077	0.0077	0.0077
D _m	(ft)	0.001	0.001	0.001
y 1	(ft)	7.41	7.97	8.83
Уo	(ft)	6.13	6.52	7.09
W ₁	(ft)	31.10	31.10	31.10
W ₂	(ft)	30.00	30.00	30.00
Q ₁	(cfs)	1,164	1,291	1,486
Q ₂	(cfs)	1,330	1,540	1,880
S ₁	(ft/ft)	0.000745	0.000721	0.000678
V*	(ft/s)	0.42	0.43	0.44
W	(m/s)	0.022	0.022	0.022
W	(ft/s)	0.07	0.07	0.07
V*/w	-	5.84	5.96	6.08
k ₁	-	0.69	0.69	0.69
y ₂	(ft)	8.52	9.50	11.08
SCOUR D	EPTH (ft):	2.39	2.98	3.99

CLEAR WATER CONTRACTION

Ref. HEC-18, page 6.12, Equations 6.4 and 6.5

$$y_{2} = \left(\frac{K_{u}Q^{2}}{D_{m}^{2/3}W_{2}^{2}}\right)^{3/7}$$
$$V *= (gy_{1}S_{1})^{1/2} \qquad y_{s} = y_{2} - y_{o}$$

NOTES:

- K_u = coefficient (English Units)
- D_m = 1.25 D₅₀
- $y_1 = avg depth in US main chl$
- $y_o = avg$ existing depth in contracted RS
- W_1 = bottom width US main chl
- W_2 = bridge width piers
- Q_1 = flow in US chl transporting sed.
- Q_2 = flow in contracted chl
- S_1 = slope of energy grade line of main chl
- V* = shear velocity in the US section
- w = fall velocity of bed material
 - (HEC-18, Figure 6.8)
- V*/w = See table below
 - k_1 = Exponent, see table below
 - y_2 = avg depth in contracted RS after scour
 - y_s = avg contraction scour depth

V*/w	k ₁	Mode of Bed Material Transport
< 0.50	0.59	Mostly contact bed material discharge
0.50-2.0	0.64	Some suspended bed material discharge
> 2.0	0.69	Mostly suspended bed material discharge

LIVE BED EXPONENT TABLE (HEC-18 Sec. 6.3)

CONTRACTION & NCHRP INPUT DATA PER HEC-RAS - NOTE: PORTION OF FULL TABLE ONLY

Reach	River Sta	Profile	Q Total	Area	Top Width	Q Channel	Vel Total	Flow Area Ch	Top W Act Chan	Vel Chnl	W.S. Elev	E.G. Slope H	Hydr Depth C
MID	2520		1330	(SQ IL) 11// 55	(IL) 506 55	030.64	(105)	20/ 27	(11) 30.10	(105)	235.00	(1011) (7.53
MID	2520	200 VP	1540	1/44.00	552.97	950.04	1.10	254.27	39.10	3.10	235.09	0.00029	7.55 8.10
MID	2520	500 VR	1880	1949.02	576 31	1024.01	0.00	350.67	39.10	2 02	236.54	0.00024	8.07
MID	2520	300 11	1000	1940.40	570.51	1024.01	0.55	550.07	59.10	2.92	200.04	0.00019	0.97
MID	2348	100 YR	1330	1229.40	581.00	967.33	1.74	229.34	31.10	4.22	234.92	0.00053	7.37
MID	2348	200 YR	1540	1573.70	589.45	1024.49	1.63	247.64	31.10	4.14	235.51	0.00046	7.96
MID	2348	500 YR	1880	2104.21	603.40	1110.74	1.54	275.30	31.10	4.03	236.40	0.00038	8.85
MID	2265	100 YR	1330	998 25	566 56	1163 50	2.98	230.60	31 10	5.05	234 72	0.00075	7 41
MID	2265	200 VR	1540	1318 17	580.23	1291 15	2.00	247.94	31.10	5 21	235.27	0.00072	7.41
MID	2205	500 VP	1990	1926.00	600.25	1495 55	2.00	271.69	31.10	5.41	236.13	0.00068	9.92
MID	2203	300 11	1000	1020.00	000.23	1403.33	2.90	274.00	51.10	5.41	230.13	0.00000	0.03
MID	2231	100 YR	1330	801.46	334.08	1262.88	3.55	288.72	39.81	4.37	234.73	0.00057	7.25
MID	2231	200 YR	1540	986.76	346.64	1445.74	3.71	310.38	39.81	4.66	235.27	0.00058	7.80
MID	2231	500 YR	1880	1284.27	367.53	1737.28	3.94	343.58	39.81	5.06	236.10	0.00060	8.63
MID	2192		Bridge										
MID	21/15	100 VR	1330	520 01	382 33	1271 58	1 52	230 07	38.66	5 30	233.85	0.00106	6.21
MID	2143	200 VR	1540	670 73	302.33	1/62.86	4.52	254.07	38.66	5.76	233.03	0.00100	6.57
MID	2145	500 YR	1880	860.61	413.39	1772.00	5.44	272.36	38.66	6.51	234.69	0.00135	7.04
MID	2106	100 YR	1330	526.27	405.53	1300.75	4.42	246.32	38.66	5.28	233.80	0.00101	6.37
MID	2106	200 YR	1540	689.20	473.39	1487.31	4.55	260.61	38.66	5.71	234.17	0.00110	6.74
MID	2106	500 YR	1880	920.18	494.50	1783.50	4.87	278.96	38.66	6.39	234.65	0.00126	7.22
MID	1967	100 YR	1330	789 84	460 57	1262 11	2 27	391 43	58 10	3 22	233 92	0 00034	6 74
MID	1967	200 YR	1540	975.58	469.97	1422.85	2.26	414.62	58.10	3.43	234.32	0.00035	7.14
MID	1967	500 YR	1880	1225.85	480.3	1676.58	2.33	445.18	58.1	3.77	234.84	0.00039	7.66
	40.40		4000	500.04	500.00	4070.00	0.54	000.00			000 50	0.00445	0.04
MID	1840	100 YR	1330	538.84	523.29	12/2.28	3.54	230.29	38.3	5.52	233.52	0.00115	6.01
MID	1840	200 YR	1540	769.5	545.22	1385.04	2.97	246.78	38.3	5.61	233.95	0.00109	6.44
MID	1840	500 YR	1880	1086.15	559.56	1543.48	2.63	268.78	38.3	5.74	234.52	0.00102	7.02

Plan: PR PLAN NORTH	MID RS: 2192 BR	U Profile: 100	YR						
Pos	Left Sta	Right StaFlow	Area W.	.P.	Percent	Hydr	Velocity	Shear	Power
	(ft)	(ft) (cfs)	(sq ft) (ft))	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)
1 LOB	-43.50	-21.50 0.02	0.13	2.54	0.00	1.84	0.13	0.01	0.00
2 Chan	-21.50	-12.95 126.33	26.71	9.11	9.50	3.12	4.73	0.49	2.30
3 Chan	-12.95	-4.40 448.61	57.26	9.16	33.73	6.70	7.84	1.04	8.14
4 Chan	-4.40	4.15 603.81	66.71	8.59	45.40	7.80	9.05	1.29	11.68
5 Chan	4.15	12.70 151.24	32.61	11.45	11.37	6.91	4.64	0.47	2.20
					Avg:	6.13]		
Plan: PR PLAN NORTH	MID RS: 2192 BR	U Profile: 200	YR						
Pos	Left Sta	Right StaFlow	Area W.	.P.	Percent	Hydr	Velocity	Shear	Power
	(ft)	(ft) (cfs)	(sq ft) (ft))	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)
1 LOB	-43.50	-21.50 0.02	0.14	2.94	0.00	2.01	0.13	0.01	0.00
2 Chan	-21.50	-12.95 161.89	30.07	9.11	10.51	3.52	5.38	0.61	3.26
3 Chan	-12.95	-4.40 518.99	60.61	9.16	33.70	7.09	8.56	1.21	10.40
4 Chan	-4.40	4.15 689.43	70.06	8.59	44.77	8.19	9.84	1.50	14.72
5 Chan	4.15	12.70 169.67	34.35	11.84	11.02	7.28	4.94	0.53	2.63
					Avg:	6.52			
Plan: PR PLAN NORTH	MID RS: 2192 BR	U Profile: 500	YR						
Pos	Left Sta	Right StaFlow	Area W.	.P.	Percent	Hydr	Velocity	Shear	Power

Pos	Left Sta	R	Right Sta	Flow	Area	W.P.		Percent	Hydr	Velocity		Shear	Power
	(ft)	(f	ft)	(cfs)	(sq ft)	(ft)		Conv	Depth(ft)	(ft/s)		(lb/sq ft)	(lb/ft s)
1 LOB	-4	43.50	-21.50	0.02	0.16		3.51	0.00	2.2)	0.13	0.01	0.00
2 Chan	-2	21.50	-12.95	223.09	35.00		9.11	11.87	4.0	9	6.37	0.81	5.14
3 Chan	-*	12.95	-4.40	632.59	65.54		9.16	33.65	7.6	7	9.65	1.50	14.50
4 Chan		-4.40	4.15	826.18	74.99		8.59	43.95	8.7	7 1	1.02	1.83	20.19
5 Chan		4.15	12.70	198.12	36.90	1	2.42	10.54	7.8	2	5.37	0.62	3.35
								Avg:	7.0)			

Plan [.] PR PI AN NORT	H MID RS.	2192 Profile: 100 YR			Plan [,] PR PI AN NOR	TH MID RS: 2	2192 Profile: 500 Y	'R	
E.G. US. (ft)	235.01	Element	Inside BR US	Inside BR DS	E.G. US. (ft)	236.47	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	234.73	E.G. Elev (ft)	234.82	234.65	W.S. US. (ft)	236.1	E.G. Elev (ft)	236.19	235.92
Q Total (cfs)	1330	W.S. Elev (ft)	234.01	233.59	Q Total (cfs)	1880	W.S. Elev (ft)	234.97	234.24
Q Bridge (cfs)	1330	Crit W.S. (ft)	231.86	232.16	Q Bridge (cfs)	1880	Crit W.S. (ft)	232.87	233.17
Q Weir (cfs)		Max Chl Dpth (ft)	7.94	6.75	Q Weir (cfs)		Max Chl Dpth (ft)	8.9	7.4
Weir Sta Lft (ft)		Vel Total (ft/s)	7.25	8.23	Weir Sta Lft (ft)		Vel Total (ft/s)	8.84	10.38
Weir Sta Rgt (ft)		Flow Area (sq ft)	183.42	161.59	Weir Sta Rgt (ft)		Flow Area (sq ft)	212.58	181.09
Weir Submerg		Froude # Chl	0.45	0.56	Weir Submerg		Froude # Chl	0.52	0.67
Weir Max Depth (ft)		Specif Force (cu ft)	917	815.57	Weir Max Depth (ft)		Specif Force (cu ft)	1326.04	1193.06
Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	6.09	5.36	Min El Weir Flow (ft)	237.38	Hydr Depth (ft)	7.07	6.01
Min El Prs (ft)	236.25	W.P. Total (ft)	40.85	38.65	Min El Prs (ft)	236.25	W.P. Total (ft)	42.79	39.95
Delta EG (ft)	0.74	Conv. Total (cfs)	25778.9	21555.9	Delta EG (ft)	1.16	Conv. Total (cfs)	32421.5	25758.1
Delta WS (ft)	0.87	Top Width (ft)	30.13	30.15	Delta WS (ft)	1.41	Top Width (ft)	30.07	30.11
BR Open Area (sq ft)	241.51	Frctn Loss (ft)	0.1	0.06	BR Open Area (sq ft)	241.51	Frctn Loss (ft)	0.14	0.07
BR Open Vel (ft/s)	8.23	C & E Loss (ft)	0.07	0.32	BR Open Vel (ft/s)	10.38	C & E Loss (ft)	0.14	0.53
BR Sluice Coef		Shear Total (lb/sq ft)	0.75	0.99	BR Sluice Coef		Shear Total (lb/sq ft)	1.04	1.51
BR Sel Method	Energy only	Power Total (lb/ft s)	5.41	8.18	BR Sel Method	Energy only	Power Total (lb/ft s)	9.22	15.65
		2102 Drofile: 200 VB							
ECUS (#)	1 IVIID KO.	Element	Incido BR LIS	Incido BP DS					
W S US (ff)	235.39	E G Elev (ft)	235 37	235 16					
O Total (cfs)	1540	W/S Elev (ff)	233.57	233.10					
O Bridge (cfs)	1540	Crit W S (ft)	232.26	232.57					
O Weir (cfs)	1040	Max Chi Doth (ft)	8 33	7.05					
Weir Stall ft (ft)		Vel Total (ft/s)	7.89	9.02					
Weir Sta Rot (ft)		Flow Area (sg ft)	195.23	170.64					
Weir Submera		Froude # Chl	0.48	0.6					
Weir Max Depth (ft)		Specif Force (cu ft)	1069.16	957.28					
Min El Weir Flow (ft)	237.38	Hvdr Depth (ft)	6.49	5.66					
Min El Prs (ft)	236.25	W.P. Total (ft)	41.63	39.25					
Delta EG (ft)	0.88	Conv. Total (cfs)	28411.3	23477.1					
Delta WS (ft)	1.05	Top Width (ft)	30.1	30.13					
BR Open Area (sq ft)	241.51	Frctn Loss (ft)	0.12	0.06					
BR Open Vel (ft/s)	9.02	C & E Loss (ft)	0.09	0.39					
BR Sluice Coef		Shear Total (lb/sq ft)	0.86	1.17					
BR Sel Method	Energy only	Power Total (lb/ft s)	6.78	10.54					

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

COMMENTS:

DATE: 10/21/2022

REVISED:

denotes field entered by user or obtained from back-up spreadsheets
 denotes computed field or standard value

E denotes sum or conclusion

FROEHLICH'S ABUTMENT SCOUR

Per HEC-18 5th Ed. Section 8.6.1

$$y_s/y_a = 2.27 \text{ K}_1 \text{ K}_2 (\text{L'}/y_a)^{0.43} \text{ Fr}^{0.61} + 1$$

 $\text{Fr} = V_e/(gy_a)^{1/2}$
 $V_e = Q_e/A_e$

VARI	ABLE		STORM EVENT									
		100	-YR	200	-YR	500-YR						
A	ABUTMENT:	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT					
K ₁	-	1.00	1.00	1.00	1.00	1.00	1.00					
Ø	(deg.)	90.00	90.00	90.00	90.00	90.00	90.00					
K ₂	-	1.00	1.00	1.00	1.00	1.00	1.00					
Ľ	(ft)	2.68	5.03	2.98	5.17	3.34	5.35					
L	(ft)	22.00	22.00	22.00	22.00	22.00	22.00					
A _e	(ft²)	52.39	109.14	64.37	121.13	82.72	139.47					
Q _e	(cfs)	39.53	354.82	56.52	416.50	87.09	516.99					
V _e	(ft/s)	0.75	3.25	0.88	3.44	1.05	3.71					
У _а	(ft)	2.38	4.96	2.93	5.51	3.76	6.34					
Fr	-	0.09	0.26	0.09	0.26	0.10	0.26					
SCOUR D	EPTH (ft):	3.66	9.91	4.47	10.83	5.70	12.21					

NOTES:

- K_1 = Coefficient for abutment shape (see table)
- \emptyset = Angle of embankment to flow (Figure 8.5, HEC-18)
- K_2 = Coefficient embankment angle = (Ø/90)^{0.13}
- L' = Length of active flow obstructed by the embankment
- L = Length of embankment within effective flow field
- A_e = Flow area of the approach xsect obstructed by embankment
- Q_e = Flow obstructed by the abutment & approach embankment
- V_e = Velocity of obstructed flow
- $y_a = Ae/L$ (Average depth of flow on the floodplain)
- Fr = Froude Number of approach flow US of the abutment

K ₁	Abutment Shape
1.00	vertical-wall
0.82	vertical-wall with ww
0.55	spill-through

TABLE 8.1 HEC-18

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

HIRE ABUTMENT SCOUR

Per HEC-18 5th Ed. Section 8.6.2

If L/y₁< 25, Use Froehlich's equation, otherwise use HIRE equation

VARI	IABLE	STORM EVENT								
		100	-YR	200	-YR	500-YR				
ABUTMENT:		LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT			
L	(ft)	22.00	22.00	22.00	22.00	22.00	22.00			
у 1	(ft)	2.38	4.96	2.93	5.51	3.76	6.34			
L/y ₁	-	9.24	4.43	7.52	4.00	5.85	3.47			
	Use HIRE:	No	No	No	No	No	No			

Fr	-	0.09	0.26	0.09	0.26	0.10	0.26
K ₁	-	1.00	1.00	1.00	1.00	1.00	1.00
K ₂	-	1.00	1.00	1.00	1.00	1.00	1.00
SCOUR D	EPTH (ft):	7.71	23.05	9.63	25.61	12.61	29.54

NOTES:

 K_1 = Coefficient for abutment shape (See Froehlich)

 K_2 = Coefficient embankment angle (See Froehlich)

Fr = Froude Number (See Froehlich)

 $y_1 = y_a$ (See Froehlich)

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

NCHRP 24-20 ABUTMENT SCOUR

Per HEC-18 5th Ed. Section 8.6.3

Compute L/B_f to determine NCHRP Scour Condition

	100-YR	200-YR	500-YR
L	44.00	44.00	44.00
В _f	44.00	44.00	44.00
L/B _f	100%	100%	100%

NOTES: L = Proj. L of embank B_f = Fldpln width

Projected length of embankment > 75% of the floodplain width, compute using live bed condition Projected length of embankment < 75% of the floodplain width, compute using clear-water condition

$y_{max} = \alpha_a y_c$	or	$y_{max} = \alpha_b y_c$
$y_s = y_{max} - y_o$		
$y_c = y_1 * (q_{2c} \div q_1)^{6/7}$		

VARI	ABLE	STORM EVENT					
		100-YR	200-YR	500-YR			
CON	ITRACTION	LIVE	LIVE	LIVE			
y 1	(ft)	7.41	7.97	8.83			
V ₁	(ft/s)	5.05	5.21	5.41			
q ₁	(ft²/s)	37.42	41.52	47.77			
Q ₂	(cfs)	1,330	1,540	1,880			
W ₂	(ft)	30.00	30.00	30.00			
q _{2c}	(ft²/s)	44.33	51.33	62.67			
$q_{2c} \div q_1$		1.18	1.24	1.31			
Уc	(ft)	8.57	9.56	11.14			
α _a		1.74	1.75	1.75			
α_{b}		-	-	-			
y _{max}	(ft)	14.91	16.73	19.50			
У _о	(ft)	7.41	7.97	8.83			
SCOUR DEPTH (ft):		7.50	8.76	10.67			

NOTES:

y 1	= US flow depth (see contraction comp)
V_1	= US velocity (see contraction comp)
q_1	= US unit discharge (y1*v1)
Q_2	= total Q in bridge (see contr. comp)
W_2	= width bridge opening
\mathbf{q}_{2c}	= unit discharge in constr. opening (Q_2/W_2)
Уc	= flow depth including contraction scour
	= See Figure 8.10 for ww abutments (live)
	= See Figure 8.12 for ww abutments (clea
	= max. flow depth resulting from abut scou
y _o	= flow depth prior to scour
Уs	= average contraction scour depth

Based on HEC-18, Evaluating Scour at Bridges, 5th edition

Figure 8.10. Scour amplification factor for wingwall abutments and live-bed conditions (NCHRP 2010b).

FROEHLICH INPUT DATA PER HEC-RAS - 100-YEAR STORM

Plan: PR	PLAN	NORTH M	ID RS: 22	31 Pro	file: 100 Y	R						
	Pos	Left Sta	Right Sta	Flow	Area	W.P.	Percent	Hydr	Velocity	Shear	Power	
		(ft)	(ft)	(cfs)	(sq ft)	(ft)	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)	
1	LOB	-187.63	-139.58	0.00	43.49	40.88	0.00	1.07	0.00	0.04	0.00	
2	LOB	-139.58	-91.54	0.00	92.60	48.12	0.00	1.93	0.00	0.07	0.00	
3	LOB	-91.54	-43.50	0.00	99.27	48.06	0.00	2.07	0.00	0.07	0.00	
4	LOB	-43.50	-18.56	44.81	59.39	26.66	3.37	2.38	0.75	0.08	0.06	Abutment at -21.5
5	Chan	-18.56	-10.60	203.03	51.18	8.17	15.27	6.43	3.97	0.22	0.88	
6	Chan	-10.60	-2.64	300.82	64.48	8.07	22.62	8.10	4.67	0.28	1.32	
7	Chan	-2.64	5.33	326.68	67.59	8.02	24.56	8.49	4.83	0.30	1.44	
8	Chan	5.33	13.29	250.72	57.90	8.11	18.85	7.27	4.33	0.25	1.09	Abutment at 8.5
9	Chan	13.29	21.25	181.64	47.57	8.05	13.66	5.98	3.82	0.21	0.80	
10	ROB	21.25	30.50	22.31	26.73	10.31	1.68	2.89	0.83	0.09	0.08	
11	ROB	30.50	68.40	0.00	61.44	37.94	0.00	1.62	0.00	0.06	0.00	<1% Conveyance
12	ROB	68.40	106.30	0.00	70.48	37.92	0.00	1.86	0.00	0.07	0.00	
13	ROB	106.30	144.20	0.00	56.91	37.96	0.00	1.50	0.00	0.05	0.00	
14	ROB	144.20	182.10	0.00	2.43	9.49	0.00	0.26	0.00	0.01	0.00	

LEFT ABUTMENT VARIABLES		RIGHT ABUTMENT VARIABLE	S
Left Floodplain Denoted As:		Right Floodplain Denoted As:	
Obstructed Subsection No	4	Obstructed Subsection No	8
Obs L Sta	-43.50	Obs R Sta	13.29
L Abutment Sta	-21.5	R Abutment Sta	8.5
Obs R Sta	-18.56	Obs L Sta	5.33
% Obstructed	88.21% = in Subsection	% Obstructed	60.18% = in Subsection
Subsection A _e	52.39 = % Obstructed x Area Subsection	Subsection A _e	34.84 = % Obstructed x Area Subsection
Subsection Q _e	39.53 = % Obstructed x Flow Subsection	Subsection Q _e	150.87 = % Obstructed x Flow Subsection
A _e	52.39 = Flood. Area + Subsection A _e	A _e	109.14 = Flood. Area + Subsection A _e
Q _e	39.53 = Flood. Flow + Subsection Q_e	Q _e	354.82 = Flood. Flow + Subsection Q_e
Effective Embankment (L)	22.00 = L Sta Floodplain - L Abut Sta	Effective Embankment (L)	22.00 = R Sta Floodplain - R Abut Sta
Vt	4.73	Vt	9.05
Уt	3.12	Уt	7.80
Obstructed Embankment (L')	2.68 = Qe/qt where qt = vt * yt	Obstructed Embankment (L')	5.03 = Qe/qt where qt = vt * yt

Plan: PR PLAN	NORTH	MID RS: 2192	BR U	Profile: 100 YR
		MID THE FIEL	DIVO	110110.100 110

	Pos	Left Sta	Right Sta	Flow	Area	W.P.	Percent	Hydr	Velocity	Shear	Power
		(ft)	(ft)	(cfs)	(sq ft)	(ft)	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)
	1 LOB	-43.50	-21.50	0.02	0.13	2.54	0.00	1.84	0.13	0.01	0.00
2	2 Chan	-21.50	-12.95	126.33	26.71	9.11	9.50	3.12	4.73	0.49	2.30
3	3 Chan	-12.95	-4.40	448.61	57.26	9.16	33.73	6.70	7.84	1.04	8.14
4	1 Chan	-4.40	4.15	603.81	66.71	8.59	45.40	7.80	9.05	1.29	11.68
Ę	5 Chan	4.15	12.70	151.24	32.61	11.45	11.37	6.91	4.64	0.47	2.20

FROEHLICH INPUT DATA PER HEC-RAS - DESIGN FLOOD

Plan: PR	PLAN	NORTH M	ID RS: 223	1 Pro	file: 200 YF	ર						
	Pos	Left Sta	Right Sta	Flow	Area	W.P.	Percent	Hydr	Velocity	Shear	Power	
		(ft)	(ft)	(cfs)	(sq ft)	(ft)	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)	
1	LOB	-235.67	-187.63	0.00	0.00	0.35	0.00	0.01	0.00	0.00	0.00	
2	LOB	-187.63	-139.58	0.00	67.58	48.12	0.00	1.41	0.00	0.05	0.00	
3	LOB	-139.58	-91.54	0.00	118.74	48.12	0.00	2.47	0.00	0.09	0.00	
4	LOB	-91.54	-43.50	0.00	125.42	48.06	0.00	2.61	0.00	0.10	0.00	<1% Conveyance
5	LOB	-43.50	-18.56	64.07	72.97	26.66	4.16	2.93	0.88	0.10	0.09	Abutment at -21.5
6	Chan	-18.56	-10.60	236.22	55.51	8.17	15.34	6.97	4.26	0.25	1.05	
7	Chan	-10.60	-2.64	340.65	68.81	8.07	22.12	8.64	4.95	0.31	1.54	
8	Chan	-2.64	5.33	368.15	71.92	8.02	23.91	9.03	5.12	0.33	1.67	
9	Chan	5.33	13.29	287.32	62.23	8.11	18.66	7.82	4.62	0.28	1.29	Abutment at 8.5
10	Chan	13.29	21.25	213.41	51.91	8.05	13.86	6.52	4.11	0.24	0.97	1
11	ROB	21.25	30.50	30.19	31.77	10.31	1.96	3.43	0.95	0.11	0.11	
12	ROB	30.50	68.40	0.00	82.07	37.94	0.00	2.17	0.00	0.08	0.00	<1% Conveyance
13	ROB	68.40	106.30	0.00	91.10	37.92	0.00	2.40	0.00	0.09	0.00	
14	ROB	106.30	144.20	0.00	77.54	37.96	0.00	2.05	0.00	0.07	0.00	
15	ROB	144.20	182.10	0.00	9.19	14.52	0.00	0.64	0.00	0.02	0.00	

LEFT ABUTMENT VARIABLES								
Left Floodplain Denoted As:		Right Floodplain Denoted As:						
Obstructed Subsection No	5	Obstructed Subsection No	9					
Obs L Sta	-43.50	Obs R Sta	13.29					
L Abutment Sta	-21.5	R Abutment Sta	8.5					
Obs R Sta	-18.56	Obs L Sta	5.33					
% Obstructed	88.21% = in Subsection	% Obstructed	60.18% = in Subsection					
Subsection A _e	64.37 = % Obstructed x Area Subsection	Subsection A _e	37.45 = % Obstructed x Area Subsection					
Subsection Q _e	56.52 = % Obstructed x Flow Subsection	Subsection Q_e	172.90 = % Obstructed x Flow Subsection					
A _e	64.37 = Flood. Area + Subsection A_e	A _e	121.13 = Flood. Area + Subsection A _e					
Q _e	56.52 = Flood. Flow + Subsection Q_e	Q _e	416.50 = Flood. Flow + Subsection Q_e					
Effective Embankment (L)	22.00 = L Sta Floodplain - L Abut Sta	Effective Embankment (L)	22.00 = R Sta Floodplain - R Abut Sta					
Vt	5.38	Vt	9.84					
Уt	3.52	Уt	8.19					
Obstructed Embankment (L')	2.98 = Qe/qt where qt = vt * yt	Obstructed Embankment (L')	5.17 = Qe/qt where qt = vt * yt					

Plan [·] PR PI AN	NORTH	MID	RS: 2192	BRU	Profile: 200 YF

lan: PR PLAN	NORTH MI	D RS: 219	2 BR U	Profile:	200 YR					
Pos	Left Sta	Right Sta	Flow	Area	W.P.	Percent	Hydr	Velocity	Shear	Power
	(ft)	(ft)	(cfs)	(sq ft)	(ft)	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)
1 LOB	-43.50	-21.50	0.02	0.14	2.94	0.00	2.01	0.13	0.01	0.00
2 Chan	-21.50	-12.95	161.89	30.07	9.11	10.51	3.52	5.38	0.61	3.26
3 Chan	-12.95	-4.40	518.99	60.61	9.16	33.70	7.09	8.56	1.21	10.40
4 Chan	-4.40	4.15	689.43	70.06	8.59	44.77	8.19	9.84	1.50	14.72
5 Chan	4.15	12.70	169.67	34.35	11.84	11.02	7.28	4.94	0.53	2.63

FROEHLICH INPUT DATA PER HEC-RAS - SUPERFLOOD

Plan: PR	PLAN	NORTH M	ID RS: 223	1 Pro	file: 500 YF	र						
	Pos	Left Sta	Right Sta	Flow	Area	W.P.	Percent	Hydr	Velocity	Shear	Power	
		(ft)	(ft)	(cfs)	(sq ft)	(ft)	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)	
1	LOB	-235.67	-187.63	0.00	5.57	13.81	0.00	0.40	0.00	0.02	0.00	
2	LOB	-187.63	-139.58	0.00	107.64	48.12	0.00	2.24	0.00	0.08	0.00	
3	LOB	-139.58	-91.54	0.00	158.81	48.12	0.00	3.31	0.00	0.12	0.00	
4	LOB	-91.54	-43.50	0.00	165.49	48.06	0.00	3.44	0.00	0.13	0.00	<1% Conveyance
5	LOB	-43.50	-18.56	98.73	93.77	26.66	5.25	3.76	1.05	0.13	0.14	Abutment at -21.5
6	Chan	-18.56	-10.60	289.73	62.15	8.17	15.41	7.81	4.66	0.29	1.33	-
7	Chan	-10.60	-2.64	403.54	75.45	8.07	21.46	9.48	5.35	0.35	1.87	
8	Chan	-2.64	5.33	433.35	78.56	8.02	23.05	9.87	5.52	0.37	2.03	
9	Chan	5.33	13.29	345.66	68.87	8.11	18.39	8.65	5.02	0.32	1.60	Abutment at 8.5
10	Chan	13.29	21.25	265.00	58.55	8.05	14.10	7.35	4.53	0.27	1.24	1
11	ROB	21.25	30.50	43.99	39.48	10.31	2.34	4.27	1.11	0.14	0.16	
12	ROB	30.50	68.40	0.00	113.68	37.94	0.00	3.00	0.00	0.11	0.00	<1% Conveyance
13	ROB	68.40	106.30	0.00	122.71	37.92	0.00	3.24	0.00	0.12	0.00	
14	ROB	106.30	144.20	0.00	109.14	37.96	0.00	2.88	0.00	0.11	0.00	
15	ROB	144.20	182.10	0.00	24.38	22.01	0.00	1.11	0.00	0.04	0.00	

LEFT ABUTMENT VARIABLES		RIGHT ABUTMENT VARIABLE Right Floodplain Denoted As:	S
Obstructed Subsection No	5	Obstructed Subsection No	9
Obs L Sta	-43.50	Obs R Sta	13.29
L Abutment Sta	-21.5	R Abutment Sta	8.5
Obs R Sta	-18.56	Obs L Sta	5.33
% Obstructed	88.21% = in Subsection	% Obstructed	60.18% = in Subsection
Subsection A _e	82.72 = % Obstructed x Area Subsection	Subsection A _e	41.44 = % Obstructed x Area Subsection
Subsection Q_e	87.09 = % Obstructed x Flow Subsection	Subsection Q_e	208.00 = % Obstructed x Flow Subsection
A _e	82.72 = Flood. Area + Subsection A _e	A _e	139.47 = Flood. Area + Subsection A_e
Q _e	87.09 = Flood. Flow + Subsection Q_e	Q _e	516.99 = Flood. Flow + Subsection Q_e
Effective Embankment (L)	22.00 = L Sta Floodplain - L Abut Sta	Effective Embankment (L)	22.00 = R Sta Floodplain - R Abut Sta
Vt	6.37	Vt	11.02
Уt	4.09	Уt	8.77
Obstructed Embankment (L')	3.34 = Qe/qt where qt = vt * yt	Obstructed Embankment (L')	5.35 = Qe/qt

Plan: PR PLAN	NORTH	MID	RS: 2192	BR U	Profile: 500 YR

	Pos	Left Sta	Right Sta	Flow	Area	W.P.	Percent	Hydr	Velocity	Shear	Power
		(ft)	(ft)	(cfs)	(sq ft)	(ft)	Conv	Depth(ft)	(ft/s)	(lb/sq ft)	(lb/ft s)
1	LOB	-43.50	-21.50	0.02	0.16	3.51	0.00	2.20	0.13	0.01	0.00
2	2 Chan	-21.50	-12.95	223.09	35.00	9.11	11.87	4.09	6.37	0.81	5.14
3	Chan	-12.95	-4.40	632.59	65.54	9.16	33.65	7.67	9.65	1.50	14.50
4	Chan	-4.40	4.15	826.18	74.99	8.59	43.95	8.77	11.02	1.83	20.19
5	5 Chan	4.15	12.70	198.12	36.90	12.42	10.54	7.82	5.37	0.62	3.35

APPENDIX F: Channel Protection

Job Description NOTTINGHAM 40612

NH Rte 152 over North River

Computed By MKH Date 10/26/2022 Checked By Date

ROCK RIPRAP AT BRIDGE ABUTMENTS

References:

1. HEC-RAS: 141-127 Route 125.prj and PR_PLAN (500-Year Storm)

2. HEC-23: Bridge Scour & Stream Instability Countermeasures 3rd Edition, Vol. I & II

Note: This includes updates to Design Guideline (DG) 14 based on FHWA Tech Brief dated 12/15/2020 (FHWA-HIF-19-007) and NCHRP Report 568 Riprap Design Criteria (2000). Revisions to HEC-23 are forthcoming incorporating the modifications.

 VALUE
 denotes field entered by user or obtained from back-up spreadsheets

 VALUE
 denotes computed field or standard value

 VALUE
 denotes sum or conclusion

Table 2.3. Hydraulic Design, Scour Design, and Scour Countermeasure Design Flood							
Frequencies.	Frequencies.						
Hydraulic Design Flood	Scour Design Flood	Scour Countermeasure					
Frequency	Frequency	Design Flood Frequency					
(Q _D)	(Q _S)	(Q _{CM})					
Q ₁₀	Q ₂₅	Q ₅₀					
Q ₂₅	Q ₅₀	Q ₁₀₀					
Q ₅₀	Q ₁₀₀	Q ₂₀₀					
Q ₁₀₀	Q ₂₀₀	Q ₅₀₀					

Determine Scour Condition

Per FHWA-HIF-19-007 Figures 3 & 4

Scour Condition A: Main Chl Scour Condition B: Overbank X

Determine Design Velocity (V)

Q=	1880 cfs	= flow in main channel at Bridge	Ref 1. @ RS 2192
A=	212.58 ft ²	= area of flow in main channel at Bridge	Ref 1. @ RS 2192
V=	8.84 ft/s	= Q/A	

Determine Froude Number (Fr)

= \u03e444	V=	8.84 ft/s	= design velocity	Ref 1. @ RS 2192
$Fr = V/(gy)^{m}$	g=	32.20 ft/s²	= gravitational acceleration	Ref 1. @ RS 2192
	W =	30.00 ft	= bridge width	-
	y=	7.09 ft	= average flow depth in main channel (A/W)	
	Fr=	0.59]	

Determine D₅₀

$$\frac{D_{50}}{y} = \frac{K}{(S_s - 1)} \left(\frac{V^2}{gy} \right) \quad \text{for } F_r \le 0.8 \qquad \qquad \frac{D_{50}}{y} = \frac{K}{(S_s - 1)} \left(\frac{V^2}{gy} \right)^{0.14} \quad \text{for } F_r > 0.8$$

Job	NOTTINGHAM 40612	Computed By	MKH	Date	10/26/2022
Description	NH Rte 152 over North River	Checked By		Date	

Determine Riprap Class

Based on NCHRP Report 568

- $\circ~$ The designer shall specify a minimum d_{50} (median stone diameter) for the rock comprising the riprap to correspond with standard classes as noted in the Table 1 of the Specification 583 and FHWA HEC-23 publication.
 - Item 583.1 Riprap, Class I Item 583.3 Riprap, Class III Item 583.5 Riprap, Class V Item 583.5 Riprap, Class VI Item 583.9 Riprap, Class IX

Determine Riprap Design Parameters

Determine Wide or Narrow Opening:

 $W_2/y_0 > 6.2$ - Use Wide Opening Parameters $W_2/y_0 \le 6.2$ - Use Wide Opening Parameters

Job	NOTTINGHAM 40612	Computed By	MKH	Date	10/26/2022
Description	NH Rte 152 over North River	Checked By		Date _	

FHWA-HIF-19-007

Figure 9: Free-Surface Flow, Narrow-Opening Scour Countermeasure.

Job Description NOTTINGHAM 40612

Computed By Checked By MKH Date 10/26/2022 NH Rte 152 over North River Date

APPENDIX G: Plans

NOTTINGHAM 40612

disk 351-0260

PLAN PREPARATION RECORD PLAN MX SDR FILES PROCESSED BY : SEL MS DATA ANNOTATED BY : SEL FIELD INSPECTED BY : SEL,DCA PLAN PREP COMPLETION DATE : 6-10-19 SURVEY COMPLETION DATE : 5-17-19 SURVEY BOOK NUMBERS : 13006

> + N. H. D. O. T. + SCALE IN FEET

සී සී ත ති ත

PLAN PREPARATION RECORD PLAN MX SDR FILES PROCESSED BY : SEL MS DATA ANNOTATED BY : SEL FIELD INSPECTED BY : SEL.DCA PLAN PREP COMPLETION DATE : 6-10-19 SURVEY COMPLETION DATE : 5-17-19 SURVEY BOOK NUMBERS : 13006

> + N. H. D. O. T. + scale in feet

_____S<u>006</u>____ 236.310 ___ 🖛 To Nottingham 103 NH Rte 152/Stage Road Ч Ч Ч Ч Ч Ч Ч Ч Ч Т Т Т Т Г \odot an CURVE #2 - NH ROUTE 152 PI = 105+53.79 N = 237062.40 E = 1131886.63 DELTA = 5°33'50.6" LT D = 3°22'13.2" R = 1700.00' T = 82.61' L = 165.09' E = 2.01' CURVE #1 - NH ROUTE 152 PI = 102+81.19 N = 236801.32 E = 1131966.79 DELTA = 7°16'00.4" LT D = 1°54'35.5" R = 3000.00' T = 190.50' T = 190.50'L = 380.49'E = 6.04'

TS&L	SUBMISSION

STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION * BUREAU OF BRIDGE DESIGN

DEFINITIONET OF	Humber entrement E	erterre er	BIGE OF PERION	
NOTTINGHAM	BRIDGI	E NO. 141/12	27 STATE PROJECT	40612

LOCA	ATION NH ROUTE 152 OVER N	ORTH RIV	VER							
GENERAL PLAN AND ELEVATION							BRIDGE SHEET			
	REVISIONS AFTER PROPOSAL			B	Y	DATE		BY	DATE	OF
			DESIGNED	TEN	M	3/20	CHECKED	TPL	3/20	FILE NUMBER
			DRAWN	TEN	M	3/20	CHECKED	TPL	3/20	
			QUANTITIES		-		CHECKED			
			ISSUE DATE		FEDERAL PROJECT NO. SHEET NO		EET NO.	TOTAL SHEETS		
			REV. DATE		1		1			

- To: Ethan Maskiell, GM2 Associates, Inc. 197 Loudon Rd, Suite 310 Concord, NH 03281 emaskiell@gm2inc.com
- From: NHB Review NH Natural Heritage Bureau Main Contact: Ashley Litwinenko - <u>nhbreview@dncr.nh.gov</u>
- cc: NHFG Review

Date: 01/03/2024 (valid until 01/03/2025)
 Re: DataCheck Review by NH Natural Heritage Bureau and NH Fish & Game
 Permits: NHDES - Shoreland Standard Permit, NHDES - Wetland Standard Dredge & Fill - Major, USACE - General
 Permit

NHB ID: NHB23-3677

Town:	Nottingham
Location:	Bridge No. 141/127 - NH Route 152 over the North River

Project Description: The project involves the replacement of the NH Route 152 bridge over the North River (Bridge No. 141/127) in Nottingham (NHDOT Project 40612). The existing bridge is a reinforced concrete jack-arch structure with a 17-foot span. It will be replaced with a 30-foot span bridge. The project also involves 200 feet of roadway widening on each side of the bridge to transition the additional 3 feet on each side of the roadway at each bridge approach back to the existing roadway. The bridge would be closed during construction and traffic would be detoured. This is an update to NHB22-3131.

Next Steps for Applicant:

NHB's database has been searched for records of rare species and exemplary natural communities. Please carefully read the comments and consultation requirements below.

NHB Comments: On 12/1/2022, Ashley Litwinenko recommended surveys occur for NHB22-3131 for climbing hempvine. I was unable to find results for this survey. If surveys occurred, please send NHB the results. If surveys have not occurred, please follow Ashley's recommendations to conduct this survey.

NHFG Comments: Please refer to NHFG consultation requirements below.

NHB Consultation

If this NHB DataCheck letter includes records of rare plants and/or natural communities/systems, please contact NHB and provide any requested supplementary materials by emailing nheaview@dncr.nh.gov.

NHB DataCheck Results Letter NH Natural Heritage Bureau Please note: maps and NHB record pages are **confidential** and shall be redacted from public documents.

If this NHB DataCheck letter DOES NOT include any records of rare plants and/or natural communities/systems, no further consultation with NHB is required.

NH Fish and Game Department Consultation

If this NHB DataCheck letter DOES NOT include <u>ANY</u> wildlife species records, then, based on the information submitted, no further consultation with the NH Fish and Game Department pursuant to Fis 1004 is required.

If this NHB DataCheck letter includes a record for a threatened (T) or endangered (E) wildlife species, consultation with the New Hampshire Fish and Game Department under Fis 1004 may be required. To review the Fis 1000 rules (effective February 3, 2022), please go to https://www.wildlife.nh.gov/wildlife-and-habitat/nongame-and-endangered-species/environmental-review. All requests for consultation and submittals should be sent via email to NHFGreview@wildlife.nh.gov or can be sent by mail, and **must include the NHB DataCheck results letter number and "Fis 1004 consultation request" in the subject line**.

If the NHB DataCheck response letter does not include a threatened or endangered wildlife species but includes other wildlife species (e.g., Species of Special Concern), consultation under Fis 1004 is not required; however, some species are protected under other state laws or rules, so coordination with NH Fish & Game is highly recommended or may be required for certain permits. While some permitting processes are exempt from required consultation under Fis 1004 (e.g., *statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule*), coordination with NH Fish & Game may still be required under the rules governing those specific permitting processes, and it is recommended you contact the applicable permitting agency. For projects <u>not</u> requiring consultation under Fis 1004, but where additional coordination with NH Fish and Game is requested, please email <u>NHFGreview@wildlife.nh.gov</u>, and include the NHB DataCheck results letter number and "review request" in the email subject line. **Contact NH Fish & Game at (603) 271-0467 with questions.**

NHB DataCheck Results Letter NH Natural Heritage Bureau Please note: maps and NHB record pages are **confidential** and shall be redacted from public documents.

NHB Database Records:

The following record(s) have been documented in the vicinity of the proposed project. Please see the map and detailed information about the record(s) on the following pages.

Plant species climbing hempvine (<i>Mikania</i> scandens)	State ¹ E	Federal 	Notes Threats include changes to the hydrology (e.g., water levels) of its habitat and increased sedimentation or nutrients and pollutants in stormwater runoff.
Vertebrate species	State ¹	Federal	Notes
American Eel (Anguilla rostrata)	SC		Contact the NH Fish & Game Dept (see above).
Blanding's Turtle (<i>Emydoidea</i> <i>blandingii</i>)	Е		Contact the NH Fish & Game Dept (see below).
Bridle Shiner (<i>Notropis</i> <i>bifrenatus</i>)*	Т		Contact the NH Fish & Game Dept (see above).
Northern Black Racer (Coluber constrictor constrictor)	Т		Contact the NH Fish & Game Dept (see above).
Spotted Turtle (<i>Clemmys</i> <i>guttata</i>)	Т		Contact the NH Fish & Game Dept (see below).
Wood Turtle (<i>Glyptemys</i> insculpta)	SC		Contact the NH Fish & Game Dept (see below).

¹Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list.

An asterisk (*) indicates that the most recent report for that occurrence was 20 or more years ago.

For all animal reviews, refer to 'IMPORTANT: NHFG Consultation' section above.

<u>Disclaimer</u>: NHB's database can only tell you of <u>known</u> occurrences that have been reported to NHFG/NHB. Known occurrences are based on information gathered by qualified biologists or members of the public, reported to our offices, and verified by NHB/NHFG.

However, many areas have never been surveyed, or have only been surveyed for certain species. NHB recommends surveys to determine what species/natural communities are present onsite.

Jennifer Riordan

From:DNCR: NHB Review <nhbreview@dncr.nh.gov>Sent:Tuesday, January 9, 2024 11:49 AMTo:Jennifer RiordanCc:Ethan Maskiell; Brown, JoshuaSubject:[WARNING-EXT]RE: NHB23-3677 - Nottingham 40612

Hi Jenn,

Thank you for sending along the rare plant survey report for climbing hempvine (*Mikania scandens*). Because the rare plant was not found during thorough surveys in suitable habitat at the appropriate time of year, NHB has no further concerns regarding NHB23-3677.

Thank you,

Maddie Severance (she/her/hers) Ecological Information Specialist New Hampshire Natural Heritage Bureau (NHB) Division of Forests & Lands NH Dept. of Natural & Cultural Resources 172 Pembroke Rd Concord, NH 03301 (603)-271-0687 (office)

From: Jennifer Riordan
JRiordan@GM2INC.COM>
Sent: Tuesday, January 9, 2024 9:17 AM
To: DNCR: NHB Review
nhbreview@dncr.nh.gov>
Cc: Ethan Maskiell
EMaskiell@GM2INC.COM>; Brown, Joshua
Joshua.R.Brown@dot.nh.gov>
Subject: NHB23-3677 - Nottingham 40612

EXTERNAL: Do not open attachments or click on links unless you recognize and trust the sender.

This email is to follow up on NHB23-3677 (formerly NHB22-3131), NHDOT Project No. 40612 (NH Route 152 over the North River bridge replacement in Nottingham). FB Environmental conducted a survey for climbing hempvine in September 2023. The species was not found within the survey area. Attached is a memo summarizing their survey methodology and results. Please let us know if you have questions or need any further information.

Thanks,

Jenn

JENNIFER RIORDAN, CWS, CPESC Senior Environmental Scientist P 603.856.7854 C 603.724.4950

Brown, Joshua

From: Subject: Joshua.R.Brown@dot.nh.gov FW: [WARNING-EXT]FW: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Hi Jennifer,

Attached is the final list of NH Fish and Game recommendations. I'm attaching the original email from F&G from back in January and this email following the new NHB that stated no additional recommendations on top of these. That is included below.

Thank you,

Josh Brown I 603-271-6916 NHDOT I Bureau of Environment <u>Wetlands Program</u> 7 Hazen Drive, Concord, NH 03302

From: Martin, Rebecca <Rebecca.A.Martin@dot.nh.gov>
Sent: Tuesday, April 2, 2024 2:24 PM
To: Brown, Joshua <Joshua.R.Brown@dot.nh.gov>
Subject: RE: [WARNING-EXT]FW: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Hi Josh,

- Blanding's Turtle (State endangered), Northern Black Racer (State threatened) and Spotted turtle (State threatened) occur within the vicinity of the project area. All operators and personnel working on or entering the site shall be made aware of the potential presence of these species and shall be provided flyers that help to identify these species, along with NHFG contact information.
- 2. Rare species information (e.g. identification, observation and reporting of observations, when to contact NHFG immediately and NHFG contact information) shall be communicated during the project's preconstruction meeting prior to work and rare species flyers shall be included on the project's bulletin board. The rare species commitments shall be included in the project's Summary of Environmental Issues and the rare species flyers shall be included in the project's contract. Additionally, rare species information shall be communicated when weekly project progress meetings are held on site.
- Turtles may be attracted to disturbed ground during nesting season (May 15th June 30th). All turtle species nests are protected by NH laws. If a nest is observed or suspected, operators shall contact Melissa Winters (603-479-1129) or Josh Megyesy (978-578-0802) at NHFG immediately for further consultation.
- 4. Black silt fence shall be anchored over the ground surface of exposed soils along the south side of the bridge prior to turtle nesting season to prevent turtles from laying eggs in the work zone.
- 5. The 30' replacement span bridge structure shall have an open bottom consisting of natural stream material. Stream bed material shall not include sharp, angular surfaces, such as rip-rap. If rip-rap must be used, it shall be covered with natural stream material to mimic upstream and downstream streambed conditions.
- 6. Dry wildlife passage shall be incorporated into the design considerations under the proposed bridge. Rip-rap or large stones shall be used to construct a wildlife shelf.

- 7. Voids within rip-rap, such as under the bridge up to the abutments and within the wildlife shelf, shall be filled with finer material (i.e. native material in between rip-rap) to create a relatively smooth surface for wildlife to traverse.
- 8. All manufactured erosion and sediment control products, with the exception of turf reinforcement mats, utilized for, but not limited to, slope protection, runoff diversion, slope interruption, perimeter control, inlet protection, check dams, and sediment traps shall not contain plastic, or multifilament or monofilament polypropylene netting or mesh with an opening size of greater than 1/8 inches.
- 9. All observations of threatened or endangered species on the project site shall be reported immediately to the NHFG nongame and endangered wildlife environmental review program by phone at 603-271-2461 and by email at <u>NHFGreview@wildlife.nh.gov</u>, with the email subject line containing the NHB DataCheck tool results letter assigned number, the project name, and the term Wildlife Species Observation.
- 10. Photographs of the observed species and nearby elements of habitat or areas of land disturbance shall be provided to NHFG in digital format at the above email address for verification, as feasible.
- 11. In the event a threatened or endangered species is observed on the project site during the term of the permit, the species shall not be disturbed, handled, or harmed in any way prior to consultation with NHFG and implementation of corrective actions recommended by NHFG.
 - a. Site operators shall be allowed to relocate wildlife encountered if discovered within the active work zone if in direct harm from project activities. Wildlife shall be relocated in close proximity to the capture location but outside of the work zone and in the direction the individual was heading. NHFG shall be contacted immediately if this action occurs.
 - 12. NHFG, including its employees and authorized agents, shall have access to the property during the term of the permit. NHFG shall contact the NHDOT's Contract Administrator or Environmental Coordinator for the project to coordinate access to the site. In the case of an emergency need for immediate access, NHFG shall contact Kevin Nyhan at 603-271-3226.
 - 13. American Eel (State species of special concern) may occur within the vicinity of the project site. Site operators should be informed of the potential presences of this species.
 - 14. The Wood Turtle flyer will be included in the contract documents and the Summary of Environmental Issues will include a commitment to make personnel aware of the potential presence of this species and a requirement to contact F&G if they are encountered in the project area.

From: Brown, Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>>
Sent: Monday, April 1, 2024 3:11 PM
To: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Subject: FW: [WARNING-EXT]FW: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New
NHB23-3677

Hi Rebecca!

Can you help me address Jennifer's question below for Nottingham, 40612? I think we just need the email before the last one from Kevin Newton with the last recommendations received to include in the wetlands application.

I checked the project folder in the rare species folder and didn't see the email correspondence.

Thank you,

Josh Brown I 603-271-6916 NHDOT I Bureau of Environment <u>Wetlands Program</u> 7 Hazen Drive, Concord, NH 03302 From: Jennifer Riordan <<u>JRiordan@GM2INC.COM</u>> Sent: Thursday, March 28, 2024 10:25 AM To: Brown, Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>> Subject: RE: [WARNING-EXT]FW: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

EXTERNAL: Do not open attachments or click on links unless you recognize and trust the sender.

Thanks!

Do you have the final recommendations? I have an email from last April (attached) and some coordination emails between Rebecca and NHFG but not a complete list of the revised recommendations. I believe Rebecca had some comments/revisions to the text and concerns with #4 regarding placing black silt fence fabric over the ground.

Jenn

JENNIFER RIORDAN, CWS, CPESC P 603.856.7854 | C 603.724.4950

EX12

From: Brown, Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>>

Sent: Thursday, March 28, 2024 9:53 AM

To: Jennifer Riordan <<u>JRiordan@GM2INC.COM</u>>

Cc: Tremblay, Jason <<u>Jason.A.Tremblay@dot.nh.gov</u>>; Darren Blood <<u>DBlood@GM2INC.COM</u>>; Tom Levins <<u>TLevins@GM2INC.COM</u>>; Jennifer Mercer <<u>JMercer@GM2INC.COM</u>>; Ethan Maskiell <<u>EMaskiell@GM2INC.COM</u>> Subject: [WARNING-EXT]FW: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Hi Jennifer,

FYI – see below as coordination was wrapped up yesterday.

Thanks! Josh

From: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>>
Sent: Wednesday, March 27, 2024 2:03 PM
To: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Brown, Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>>
Subject: RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Hi Rebecca,

NHFG does not have any additional recommendations beyond what was previously discussed. Based on the identification of rare species on site by FB Environmental when they were doing their assessment, NHDOT / contractors should be extra vigilant and should report any sightings to NHFG Nongame program immediately.

Thanks,

Kevin Newton Wildlife Biologist NH Fish and Game Department Wildlife Division 11 Hazen Drive, Concord NH 03301 Phone: 603-271- 5860

New Hampshire Fish and Game requirements for environmental review consultation can be found at: <u>https://gencourt.state.nh.us/rules/state_agencies/fis1000.html</u>. ALL requests for consultation and submittals should be sent via email to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail. **The NHB datacheck results letter number needs to be included in the email subject line to read as "NHBxx-xxxx_Project Name_FIS 1004 Consultation Submittal".**

The requirements for consultation (Fis 1004) shall not apply to the following: statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule. Review requests for these projects or other project types should be submitted to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail – email or mail subject line for these review requests should read **"NHBxx-xxxx_Project Name_ Env. Review Request"**.

Please provide shapefiles/KMZ/KMLs of the project site (and relevant features if applicable) with your submittal. Review statements provided in the NHB Datacheck Results letter for additional guidance.

From: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Sent: Wednesday, March 27, 2024 11:08 AM
To: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>>
Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Brown, Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>>
Subject: RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Hello Kevin,

Josh Brown has taken over as the EM for the Nottingham 40612 project and he is preparing to submit the wetlands application. Were there any other conservation measures F&G would like to recommend for this project? Thanks for all of the coordination on this one, it was helpful in our discussions with the design team.

Best wishes, Rebecca

From: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>
Sent: Tuesday, January 16, 2024 9:27 AM
To: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Winters, Melissa <<u>Melissa.J.Winters@wildlife.nh.gov</u>>; Brown, Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>>; Brown, Subject: RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Thanks Rebecca.

We will let you know if there are any changes to recommendations for the project.

Have a good week,

Kevin Newton Wildlife Biologist NH Fish and Game Department
Wildlife Division 11 Hazen Drive, Concord NH 03301 Phone: 603-271- 5860

New Hampshire Fish and Game requirements for environmental review consultation can be found at:

<u>https://gencourt.state.nh.us/rules/state_agencies/fis1000.html</u>. ALL requests for consultation and submittals should be sent via email to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail. **The NHB datacheck results letter number needs to be included in the email subject line to read as "NHBxx-xxxx_Project Name_FIS 1004 Consultation Submittal".**

The requirements for consultation (Fis 1004) shall not apply to the following: statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule. Review requests for these projects or other project types should be submitted to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail – email or mail subject line for these review requests should read **"NHBxx-xxxx_Project Name_Env. Review Request"**.

Please provide shapefiles/KMZ/KMLs of the project site (and relevant features if applicable) with your submittal. Review statements provided in the NHB Datacheck Results letter for additional guidance.

From: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Sent: Tuesday, January 16, 2024 9:24 AM
To: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>>
Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Winters, Melissa <<u>Melissa.J.Winters@wildlife.nh.gov</u>>; Brown,
Joshua <<u>Joshua.R.Brown@dot.nh.gov</u>>; Subject: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612, New NHB23-3677

Hello Kevin,

Please see attached the new NHB report for the Nottingham 40612 project.

Thank you,

Rebecca Martin Plant and Wildlife Program Manager NH DOT Bureau of Environment 7 Hazen Drive Concord, NH 03302 (603)271-6781 <u>Rebecca.A.Martin@dot.nh.gov</u>

Brown, Joshua

From:	Newton, Kevin
Sent:	Friday, January 12, 2024 2:26 PM
То:	Martin, Rebecca
Cc:	FGC: NHFG review; Winters, Melissa; Brown, Joshua; Benedict, Karl
Subject:	RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612

Hi Rebecca and Josh,

Melissa shared with me some information regarding rare species records identified by FB consultants associated with an assessment they were completing on site. As a reminder, if they have not already been shared with NHFG (i.e Melissa), please share that information with us as soon as possible so we can add to our records.

Has any work been completed on site? We have also become aware that an updated NHB letter has been completed. Please share that with us as soon as possible as well as any proposed changes (if any) to the site plans or methodology.

Melissa has indicated given the apparent new occurrences of species on site identified by FB environmental as well as the updated NHB datacheck letter, she would like us to take a closer look at the project details and potentially reevaluate project recommendations.

I don't have an issue with the language proposed - Melissa, do you have any thoughts?

Have a good long weekend,

Kevin Newton Wildlife Biologist NH Fish and Game Department Wildlife Division 11 Hazen Drive, Concord NH 03301 Phone: 603-271- 5860

New Hampshire Fish and Game requirements for environmental review consultation can be found at: <u>https://gencourt.state.nh.us/rules/state_agencies/fis1000.html</u>. ALL requests for consultation and submittals should be sent via email to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail. **The NHB datacheck results letter number needs to be included in the email subject line to read as "NHBxx-xxxx_Project Name_FIS 1004 Consultation Submittal".**

The requirements for consultation (Fis 1004) shall not apply to the following: statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule. Review requests for these projects or other project types should be submitted to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail – email or mail subject line for these review requests should read "**NHBxx-xxxx_Project Name_Env. Review Request**".

Please provide shapefiles/KMZ/KMLs of the project site (and relevant features if applicable) with your submittal. Review statements provided in the NHB Datacheck Results letter for additional guidance.

From: Martin, Rebecca <Rebecca.A.Martin@dot.nh.gov>
Sent: Friday, January 12, 2024 8:04 AM
To: Newton, Kevin <Kevin.M.Newton@wildlife.nh.gov>
Cc: FGC: NHFG review <NHFGreview@wildlife.nh.gov>; Winters, Melissa <Melissa.J.Winters@wildlife.nh.gov>; Brown,

Joshua <Joshua.R.Brown@dot.nh.gov> Subject: RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612

Hi Kevin,

The Nottingham 40612 project is working its way towards a wetland permit application. There is a public meeting for the project planned later this month and a public hearing planned in March. Since the major effort now for the project is the wetland permit application, I have passed the project along to Josh Brown in the BOE Wetlands Program (copied here).

The design team for the project found your responses helpful (as did I), thank you for taking the time. The only remaining question was of the best way to ensure awareness of the potential presence during construction (#2 and additional recommendation #2). I had an opportunity to confer with the two Bureau of Environment Environmental Coordinators who oversee the NHDOT environmental commitments that pertain to construction activities. They visit the project sites weekly and check in with the Contract Administrators (CA) regularly about the environmental commitments developed during the projects' designs. I asked them what we could commit to *and* realistically expect to happen on the project site during construction. They confirmed that having commitments listed in the Summary of Environmental Issues (the green sheet I mentioned earlier), flyers posted on the bulletin board, and concerns noted at the preconstruction meeting are the best ways to raise awareness. The CA pays attention to these commitments and is generally on site daily (may not be the case with a small paving project) to ensure compliance with all contract commitments. I asked for the Environmental Coordinators help adjusting the recommendation to one that would be most likely to be successful. Could you please review and let me know if you would like to discuss further?

Rare species information (e.g. identification, observation and reporting of observations, when to contact NHFG immediately and NHFG contact information) shall be communicated during the project's preconstruction meeting prior to work and rare species flyers shall be included on the project's bulletin board. The rare species commitments shall be included in the project's Summary of Environmental Issues and the rare species flyers shall be included in the project's contract. Additionally, rare species information shall be communicated when weekly project progress meetings are held on site.

I hope that you had a Happy New Year and enjoyed the holidays!

Best wishes, Rebecca

Rebecca Martin Plant and Wildlife Program Manager NH DOT Bureau of Environment 7 Hazen Drive Concord, NH 03302 (603)271-6781 <u>Rebecca.A.Martin@dot.nh.gov</u>

From: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>>
Sent: Friday, June 2, 2023 1:09 PM
To: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Winters, Melissa <<u>Melissa.J.Winters@wildlife.nh.gov</u>>
Subject: RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612

Hi Rebecca,

Thank you for your comments. We are happy to work with you to better tailor recommendations for DOT projects where possible. If we want to fine-tune, it might be best to schedule a meeting regarding DOT specific recommendation language so we can talk through them. The recommendations you are offering comments on have become standardized for our program, so I'm hesitant to deviate from them too much. I understand your points regarding keeping recommendations on plan sheets vs. moving them to the Summary of Environmental Issues document. I think has the potential to reduce compliance if sub-contractors don't regularly reference the summary document. Typically, applicants make a separate plan sheet that lists out our recommendations and has the flyers included directly on it. I'm happy to provide an example if you would like.

Some responses to your comments below:

•#2: The primary purpose of the tailgate meeting recommendation is to ensure anyone who is working on site is aware (reminded daily) of the potential to encounter rare wildlife while working.. Including this information in the Summary of Environmental Issues and within the project's contract is helpful, but should not replace the recommendation itself. If there is a more appropriate way to word this recommendation for situations where there are not daily meetings before starting work, we are open to suggestions.

•#5: the engineer is correct, the streambed in this case is synonymous with channel.

•#8: Yes, these materials are OK to be included in this design.

•#9: Thank you for pointing out this discrepancy. This item is on our list of corrections to make. Attached is a corrected flyer, which references the <u>NHFGreview@wildlife.nh.gov</u> email, which should be used.

•#10: Animals should <u>not</u> be handled unless in direct harm of project activities.

•#11: Relocation of listed wildlife is allowed <u>only</u> if in direct harm. If an individual is relocated, NHFG needs to be notified immediately to determine if additional action is needed.

•#12: This is an acceptable change.

•Additional recommendation #2: Similar response as to #2 in that we want this information to be reviewed by contractors daily to ensure compliance with reporting protocol and BMPs.

Let me know your thoughts. If you would like to discuss specific language further, I would suggest we schedule a conference call along with Melissa, as she likely would like to Be involved.

Thanks,

Kevin Newton Wildlife Biologist NH Fish and Game Department Wildlife Division 11 Hazen Drive, Concord NH 03301 Phone: 603-271- 5860

From: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>
Sent: Thursday, May 25, 2023 10:19 AM
To: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>>
Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Winters, Melissa <<u>Melissa.J.Winters@wildlife.nh.gov</u>>; Duclos,
Kristin <<u>Kristin.L.Duclos@des.nh.gov</u>>; Jennifer Riordan <<u>iriordan@gm2inc.com</u>>
Subject: RE: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham 40612

Hi Kevin,

Thanks for your help with the review of this project. I checked in with the design team and we have a few questions and suggestions. Could you please review and let me know if you would like to discuss?

One thing I have seen come up on a few projects and meant to check in with you about is the reference to tailgate meetings and inclusion of the rare species information specifically on plan sheets (#2).

- Not all of our contractors have morning tailgate meetings- however, we do have a preconstruction meeting
 where all of the supervisors/foremen from the Contractor are supposed to be present and all of the important
 contract commitments are discussed. Our Bureau of Environment Environmental Coordinators attend and go
 through the project's environmental commitments (including wildlife) and are available to address any
 Contractor questions. The Environmental Coordinators visit active construction projects to discuss any
 commitments for the project periodically and our Contract Administrators are regularly onsite during
 construction to oversee all project commitments. Please see suggested commitment below.
- When we have a specific area of concern (more often for rare plants) it is helpful to put something on the plans, since it has location specific information. When there is not location specific information, we find it more helpful to include this type of information in the contract documents. We have a page called the *Summary of Environmental Issues* that we include in our contracts and it is the only page printed on green paper everyone know that this page includes a summary of the project's environmental commitments and the color makes it an easy reference.

Best,

Rebecca

New Hampshire Fish and Game – Recommended Permit Conditions

- Blanding's Turtle (State endangered), Northern Black Racer (State threatened) and Spotted turtle (State threatened) occur within the vicinity of the project area. All operators and personnel working on or entering the site shall be made aware of the potential presence of these species and shall be provided flyers that help to identify these species, along with NHFG contact information.
- Rare species information (e.g. identification, observation and reporting of observations, when to contact NHFG immediately and NHFG contact information) shall be communicated during morning tailgate meetings prior to work commencement during the construction phase of the project. See Plan Sheet xxxxxx. Include attached flyers to plan sheet set.

Suggested: Rare species information (e.g. identification, observation and reporting of observations, when to contact NHFG immediately and NHFG contact information) shall be communicated during the project's preconstruction meeting prior to work and rare species flyers shall be included on the project's bulletin board. The rare species commitments shall be included in the project's *Summary of Environmental Issues* and the rare species flyers shall be included in the project's contract.

- Turtles may be attracted to disturbed ground during nesting season (May 15th June 30th). All turtle species nests are protected by NH laws. If a nest is observed or suspected, operators shall contact Melissa Winters (603-479-1129) or Josh Megyesy (978-578-0802) at NHFG immediately for further consultation.
- 4. Black silt fence shall be anchored over the ground surface of exposed soils along the south side of the bridge prior to turtle nesting season to prevent turtles from laying eggs in the work zone.
- The 30' replacement span bridge structure shall have an open bottom consisting of natural stream material. Stream bed material shall not include sharp, angular surfaces, such as rip-rap. If rip-rap must be used, it shall be covered with natural stream material to mimic upstream and downstream streambed conditions. The project engineer asked me to confirm that streambed is synonymous with channel (i.e. not banks and not the wildlife shelf).
- 6. Dry wildlife passage shall be incorporated into the design considerations under the proposed bridge. Rip-rap or larges stones shall be used to construct a wildlife shelf.
- 7. Voids within rip-rap, such as under the bridge up to the abutments and within the wildlife shelf, shall be filled with finer material (i.e native material in between rip-rap) to create a relatively smooth surface for wildlife to traverse.

- All manufactured erosion and sediment control products, with the exception of turf reinforcement mats, utilized for, but not limited to, slope protection, runoff diversion, slope interruption, perimeter control, inlet protection, check dams, and sediment traps shall not contain plastic, or multifilament or monofilament polypropylene netting or mesh with an opening size of greater than 1/8 inches.
 The project engineer asked me to confirm that our typical black silt fence and in water turbidity control is okay to be erected on the project? These do include plastic but would not have openings of 1/8".
- 9. All observations of threatened or endangered species on the project site shall be reported immediately to the NHFG nongame and endangered wildlife environmental review program by phone at 603-271-2461 and by email at <u>NHFGreview@wildlife.nh.gov</u>, with the email subject line containing the NHB DataCheck tool results letter assigned number, the project name, and the term Wildlife Species Observation. The email here is different than the one listed on the wood turtle flyer.
- 10. Photographs of the observed species and nearby elements of habitat or areas of land disturbance shall be provided to NHFG in digital format at the above email address for verification, as feasible.
- 11. In the event a threatened or endangered species is observed on the project site during the term of the permit, the species shall not be disturbed, handled, or harmed in any way prior to consultation with NHFG and implementation of corrective actions recommended by NHFG.
 - a. Site operators shall be allowed to relocate wildlife encountered if discovered within the active work zone if in direct harm from project activities. Wildlife shall be relocated in close proximity to the capture location but outside of the work zone and in the direction the individual was heading. NHFG shall be contacted immediately if this action occurs.

The project engineer requested clarification of #10 and #11. For #10, if handling the species would allow for a better picture, should they move it? For #11 the first part says not to disturb the species and the second part says relocation. Does the wildlife relocation only pertain to non-listed species?

12. NHFG, including its employees and authorized agents, shall have access to the property during the term of the permit.

Please contact the NHDOT's Contract Administrator or Environmental Coordinator, Darrel Elliot 603-419-9822, for the project to coordinate access to the site. Please ensure any F&G employees, or authorized agents, are accompanied by NHDOT personnel to ensure their safe access within construction zones.

Additional Recommendations:

- 1. American Eel (State species of special concern) may occur within the vicinity of the project site. Site operators should be informed of the potential presences of this species.
- Wood Turtle (State species of special concern) may occur within the vicinity of the project site. All operators and personnel working on or entering the site should be made aware of the potential presence of these species and should be provided flyers that help to identify these species, along with NHFG contact information. See Plan Sheet xxxxxx. Include attached flyers to plan sheet set.

Suggested: The Wood Turtle flyer will be included in the contract documents and the *Summary of Environmental Issues* will include a commitment to make personnel aware of the potential presence of this species and a requirement to contact F&G if they are encountered in the project area.

From: Newton, Kevin <<u>Kevin.M.Newton@wildlife.nh.gov</u>>

Sent: Tuesday, April 25, 2023 1:43 PM

To: Martin, Rebecca <<u>Rebecca.A.Martin@dot.nh.gov</u>>; Jennifer Riordan <<u>jriordan@gm2inc.com</u>>

Cc: FGC: NHFG review <<u>NHFGreview@wildlife.nh.gov</u>>; Winters, Melissa <<u>Melissa.J.Winters@wildlife.nh.gov</u>>; Duclos, Kristin <<u>Kristin.L.Duclos@des.nh.gov</u>>

Subject: NHB22-3131, North River, NHDOT Bridge No.141/127, Nottingham

Good afternoon,

New Hampshire Fish and Game has completed review of materials submitted for consultation for NHB22-3131 (*site plans dated*) 01/2020) prepared by GM2 Associates, Inc. The proposed project is the replacement of the existing reinforced concrete jack-arch structure, 17-foot NH Route 152 Bridge (NHDOT Bridge No.141/127) with a 30-foot span bridge over North River located in Nottingham, NH. The proposed project also involves 200 feet of roadway widening on each side of the bridge approach.

NHFG agrees with the incorporation of conservation measures previously provided by NHFG through correspondence with Kim Tuttle in 2019. The replacement bridge, consisting of a 30' open span, should result in improved wildlife passage opportunities if the below recommendations are implemented.

Applications associated with this review:

- NHDES Wetland Standard Dredge & Fill Major (pending)
- NHDES Shoreland Standard Permit (pending)

Based on the NHB datacheck results letter and the information provided in the submission, we request the following recommended permit conditions. THESE RECOMMENDED PERMIT CONDITIONS ARE APPLICABLE TO ALL STATE PERMITS LISTED ABOVE.

• Please include recommended permit conditions in final plan sheets plans as written below (updated highlighted text as applicable) and provide to NHDES and cc NHFG for final review. Permit reviewers will adopt/include NHFG permit conditions in the permit if approved.

New Hampshire Fish and Game – Recommended Permit Conditions

- Blanding's Turtle (State endangered), Northern Black Racer (State threatened) and Spotted turtle (State threatened) occur within the vicinity of the project area. All operators and personnel working on or entering the site shall be made aware of the potential presence of these species and shall be provided flyers that help to identify these species, along with NHFG contact information.
- Rare species information (e.g. identification, observation and reporting of observations, when to contact NHFG immediately and NHFG contact information) shall be communicated during morning tailgate meetings prior to work commencement during the construction phase of the project. See Plan Sheet xxxxxx. Include attached flyers to plan sheet set.
- 3. Turtles may be attracted to disturbed ground during nesting season (May 15th June 30th). All turtle species nests are protected by NH laws. If a nest is observed or suspected, operators shall contact Melissa Winters (603-479-1129) or Josh Megyesy (978-578-0802) at NHFG immediately for further consultation.
- 4. Black silt fence shall be anchored over the ground surface of exposed soils along the south side of the bridge prior to turtle nesting season to prevent turtles from laying eggs in the work zone.
- 5. The 30' replacement span bridge structure shall have an open bottom consisting of natural stream material. Stream bed material shall not include sharp, angular surfaces, such as rip-rap. If rip-rap must be used, it shall be covered with natural stream material to mimic upstream and downstream streambed conditions.
- 6. Dry wildlife passage shall be incorporated into the design considerations under the proposed bridge. Rip-rap or larges stones shall be used to construct a wildlife shelf.
- 7. Voids within rip-rap, such as under the bridge up to the abutments and within the wildlife shelf, shall be filled with finer material (i.e native material in between rip-rap) to create a relatively smooth surface for wildlife to traverse.
- 8. All manufactured erosion and sediment control products, with the exception of turf reinforcement mats, utilized for, but not limited to, slope protection, runoff diversion, slope interruption, perimeter control, inlet protection, check dams, and sediment traps shall not contain plastic, or multifilament or monofilament polypropylene netting or mesh with an opening size of greater than 1/8 inches.
- 9. All observations of threatened or endangered species on the project site shall be reported immediately to the NHFG nongame and endangered wildlife environmental review program by phone at 603-271-2461 and by email

at <u>NHFGreview@wildlife.nh.gov</u>, with the email subject line containing the NHB DataCheck tool results letter assigned number, the project name, and the term Wildlife Species Observation.

- 10. Photographs of the observed species and nearby elements of habitat or areas of land disturbance shall be provided to NHFG in digital format at the above email address for verification, as feasible.
- 11. In the event a threatened or endangered species is observed on the project site during the term of the permit, the species shall not be disturbed, handled, or harmed in any way prior to consultation with NHFG and implementation of corrective actions recommended by NHFG.
 - a. Site operators shall be allowed to relocate wildlife encountered if discovered within the active work zone if in direct harm from project activities. Wildlife shall be relocated in close proximity to the capture location but outside of the work zone and in the direction the individual was heading. NHFG shall be contacted immediately if this action occurs.
- 12. NHFG, including its employees and authorized agents, shall have access to the property during the term of the permit.

Additional Recommendations:

- 1. American Eel (State species of special concern) may occur within the vicinity of the project site. Site operators should be informed of the potential presences of this species.
- Wood Turtle (State species of special concern) may occur within the vicinity of the project site. All operators and personnel working on or entering the site should be made aware of the potential presence of these species and should be provided flyers that help to identify these species, along with NHFG contact information. See Plan Sheet xxxxxx. Include attached flyers to plan sheet set.

NHFG has completed our review of materials submitted for consultation under FIS 1004. No further coordination with NHFG is requested, and the final recommendations have been transmitted to the applicable permitting agency. Questions or concerns on NHFG recommendations must follow FIS 1004.12. Note that NHFG recommendations may be withdrawn pursuant to FIS 1004.

Sincerely,

Kevin Newton Wildlife Biologist NH Fish and Game Department Wildlife Division 11 Hazen Drive, Concord NH 03301 Phone: 603-271- 5860

New Hampshire Fish and Game requirements for environmental review consultation can be found at: <u>https://gencourt.state.nh.us/rules/state_agencies/fis1000.html</u>. ALL requests for consultation and submittals should be sent via email to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail. **The NHB datacheck results letter number needs to be included in the email subject line to read as "NHBxx-xxxx_Project Name_FIS 1004 Consultation Submittal"**.

The requirements for consultation (Fis 1004) shall not apply to the following: statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule. Review requests for these projects or other project types should be submitted to <u>NHFGreview@wildlife.nh.gov</u> or can be sent hardcopy by mail – email or mail subject line for these review requests should read **"NHBxx-xxxx_Project Name_ Env. Review Request"**.

Please provide shapefiles/KMZ/KMLs of the project site (and relevant features if applicable) with your submittal. Review statements provided in the NHB Datacheck Results letter for additional guidance.

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

In Reply Refer To: Project Code: 2024-0035583 Project Name: Nottingham 40612 03/26/2024 14:21:50 UTC

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

Updated 4/12/2023 - *Please review this letter each time you request an Official Species List, we will continue to update it with additional information and links to websites may change.*

About Official Species Lists

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Federal and non-Federal project proponents have responsibilities under the Act to consider effects on listed species.

The enclosed species list identifies threatened, endangered, proposed, and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. The Service recommends that verification be completed by visiting the IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested by returning to an existing project's page in IPaC.

Endangered Species Act Project Review

Please visit the **"New England Field Office Endangered Species Project Review and Consultation**" website for step-by-step instructions on how to consider effects on listed

species and prepare and submit a project review package if necessary:

https://www.fws.gov/office/new-england-ecological-services/endangered-species-project-review

NOTE Please <u>do not</u> use the **Consultation Package Builder** tool in IPaC except in specific situations following coordination with our office. Please follow the project review guidance on our website instead and reference your **Project Code** in all correspondence.

Northern Long-eared Bat - (Updated 4/12/2023) The Service published a final rule to reclassify the northern long-eared bat (NLEB) as endangered on November 30, 2022. The final rule went into effect on March 31, 2023. You may utilize the **Northern Long-eared Bat Rangewide Determination Key** available in IPaC. More information about this Determination Key and the Interim Consultation Framework are available on the northern long-eared bat species page:

https://www.fws.gov/species/northern-long-eared-bat-myotis-septentrionalis

For projects that previously utilized the 4(d) Determination Key, the change in the species' status may trigger the need to re-initiate consultation for any actions that are not completed and for which the Federal action agency retains discretion once the new listing determination becomes effective. If your project was not completed by March 31, 2023, and may result in incidental take of NLEB, please reach out to our office at <u>newengland@fws.gov</u> to see if reinitiation is necessary.

Additional Info About Section 7 of the Act

Under section 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to determine whether projects may affect threatened and endangered species and/or designated critical habitat. If a Federal agency, or its non-Federal representative, determines that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Federal agency also may need to consider proposed species and proposed critical habitat in the consultation. 50 CFR 402.14(c)(1) specifies the information required for consultation under the Act regardless of the format of the evaluation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

https://www.fws.gov/service/section-7-consultations

In addition to consultation requirements under Section 7(a)(2) of the ESA, please note that under sections 7(a)(1) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species. Please contact NEFO if you would like more information.

Candidate species that appear on the enclosed species list have no current protections under the ESA. The species' occurrence on an official species list does not convey a requirement to

consider impacts to this species as you would a proposed, threatened, or endangered species. The ESA does not provide for interagency consultations on candidate species under section 7, however, the Service recommends that all project proponents incorporate measures into projects to benefit candidate species and their habitats wherever possible.

Migratory Birds

In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see:

https://www.fws.gov/program/migratory-bird-permit

https://www.fws.gov/library/collections/bald-and-golden-eagle-management

Please feel free to contact us at **newengland@fws.gov** with your **Project Code** in the subject line if you need more information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat.

Attachment(s): Official Species List

Attachment(s):

Official Species List

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

PROJECT SUMMARY

Project Code: 2024-0035583 **Project Name:** Nottingham 40612 **Project Type:** Bridge - Replacement Project Description: The project involves the replacement of the existing bridge that carries NH Route 152 over the North River (Bridge No. 141/127) in Nottingham. The existing bridge is a reinforced concrete jack-arch structure with a 17foot span and is currently on the State's Red List. Proposed work includes the replacement of the existing bridge with a 30-foot span bridge. The bridge will be widened 2 feet and the project includes 300 feet of roadway widening on each end of the bridge to transition the additional three feet on each side of the roadway at each bridge approach back to the existing roadway. The bridge will be closed during construction and traffic will be detoured.

The total amount of proposed wetland and watercourse impact is 4,841 square feet and 256 linear feet. This includes 2,401 square feet (182 linear feet) of permanent perennial stream impact and 1,203 square feet (74 linear feet) of temporary perennial impact. Approximately 538 square feet of permanent impact and approximately 699 square feet of temporary impact to PRA wetlands is proposed.

Project Location:

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@43.148379750000004,-71.11319881821845,14z</u>

Counties: Rockingham County, New Hampshire

ENDANGERED SPECIES ACT SPECIES

There is a total of 3 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Note that 1 of these species should be considered only under certain conditions.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME	STATUS
Northern Long-eared Bat <i>Myotis septentrionalis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	Endangered
 Tricolored Bat <i>Perimyotis subflavus</i> No critical habitat has been designated for this species. This species only needs to be considered under the following conditions: This species only needs to be considered if the project includes wind turbine operations. Species profile: <u>https://ecos.fws.gov/ecp/species/10515</u> 	Proposed Endangered
INSECTS	

NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i>	Candidate
No critical habitat has been designated for this species.	
Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>	

CRITICAL HABITATS

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

YOU ARE STILL REQUIRED TO DETERMINE IF YOUR PROJECT(S) MAY HAVE EFFECTS ON ALL ABOVE LISTED SPECIES.

IPAC USER CONTACT INFORMATION

Agency: GM2 Associates, Inc. Name: Ethan Maskiell Address: 197 Loudon Road Address Line 2: Suite 310 City: Concord NH State: Zip: 03301 Email emaskiell@gm2inc.com Phone: 6038567854

LEAD AGENCY CONTACT INFORMATION

Lead Agency: Army Corps of Engineers

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

In Reply Refer To: Project code: 2024-0035583 Project Name: Nottingham 40612 03/26/2024 14:19:53 UTC

Federal Action Agency (if applicable): Army Corps of Engineers

Subject: Record of project representative's no effect determination for 'Nottingham 40612'

Dear Ethan Maskiell:

This letter records your determination using the Information for Planning and Consultation (IPaC) system provided to the U.S. Fish and Wildlife Service (Service) on March 26, 2024, for 'Nottingham 40612' (here forward, Project). This project has been assigned Project Code 2024-0035583 and all future correspondence should clearly reference this number. **Please carefully review this letter.**

Ensuring Accurate Determinations When Using IPaC

The Service developed the IPaC system and associated species' determination keys in accordance with the Endangered Species Act of 1973 (ESA; 87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) and based on a standing analysis. All information submitted by the Project proponent into IPaC must accurately represent the full scope and details of the Project.

Failure to accurately represent or implement the Project as detailed in IPaC or the Northern Long-eared Bat Rangewide Determination Key (Dkey), invalidates this letter. *Answers to certain questions in the DKey commit the project proponent to implementation of conservation measures that must be followed for the ESA determination to remain valid.*

Determination for the Northern Long-Eared Bat

Based upon your IPaC submission and a standing analysis, your project has reached the determination of "No Effect" on the northern long-eared bat. To make a no effect determination, the full scope of the proposed project implementation (action) should not have any effects (either positive or negative), to a federally listed species or designated critical habitat. Effects of the action are all consequences to listed species or critical habitat that are caused by the proposed action. A

consequence is caused by the proposed action if it would not occur but for the proposed action and it is reasonably certain to occur. Effects of the action may occur later in time and may include consequences occurring outside the immediate area involved in the action. (See § 402.17).

Under Section 7 of the ESA, if a federal action agency makes a no effect determination, no consultation with the Service is required (ESA §7). If a proposed Federal action may affect a listed species or designated critical habitat, formal consultation is required except when the Service concurs, in writing, that a proposed action "is not likely to adversely affect" listed species or designated critical habitat [50 CFR §402.02, 50 CFR§402.13].

Other Species and Critical Habitat that May be Present in the Action Area

The IPaC-assisted determination for the northern long-eared bat does not apply to the following ESA-protected species and/or critical habitat that also may occur in your Action area:

- Monarch Butterfly Danaus plexippus Candidate
- Tricolored Bat *Perimyotis subflavus* Proposed Endangered

You may coordinate with our Office to determine whether the Action may affect the animal species listed above and, if so, how they may be affected.

Next Steps

Based upon your IPaC submission, your project has reached the determination of "No Effect" on the northern long-eared bat. If there are no updates on listed species, no further consultation/ coordination for this project is required with respect to the northern long-eared bat. However, the Service recommends that project proponents re-evaluate the Project in IPaC if: 1) the scope, timing, duration, or location of the Project changes (includes any project changes or amendments); 2) new information reveals the Project may impact (positively or negatively) federally listed species or designated critical habitat; or 3) a new species is listed, or critical habitat designated. If any of the above conditions occurs, additional coordination with the Service should take place to ensure compliance with the Act.

If you have any questions regarding this letter or need further assistance, please contact the New England Ecological Services Field Office and reference Project Code 2024-0035583 associated with this Project.

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

Nottingham 40612

2. Description

The following description was provided for the project 'Nottingham 40612':

The project involves the replacement of the existing bridge that carries NH Route 152 over the North River (Bridge No. 141/127) in Nottingham. The existing bridge is a reinforced concrete jack-arch structure with a 17-foot span and is currently on the State's Red List. Proposed work includes the replacement of the existing bridge with a 30-foot span bridge. The bridge will be widened 2 feet and the project includes 300 feet of roadway widening on each end of the bridge to transition the additional three feet on each side of the roadway at each bridge approach back to the existing roadway. The bridge will be closed during construction and traffic will be detoured.

The total amount of proposed wetland and watercourse impact is 4,841 square feet and 256 linear feet. This includes 2,401 square feet (182 linear feet) of permanent perennial stream impact and 1,203 square feet (74 linear feet) of temporary perennial impact. Approximately 538 square feet of permanent impact and approximately 699 square feet of temporary impact to PRA wetlands is proposed.

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@43.148379750000004,-71.11319881821845,14z</u>

DETERMINATION KEY RESULT

Based on the information you provided, you have determined that the Proposed Action will have no effect on the Endangered northern long-eared bat (Myotis septentrionalis). Therefore, no consultation with the U.S. Fish and Wildlife Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (87 Stat. 884, as amended 16 U.S.C. 1531 *et seq.*) is required for those species.

QUALIFICATION INTERVIEW

1. Does the proposed project include, or is it reasonably certain to cause, intentional take of the northern long-eared bat or any other listed species?

Note: Intentional take is defined as take that is the intended result of a project. Intentional take could refer to research, direct species management, surveys, and/or studies that include intentional handling/encountering, harassment, collection, or capturing of any individual of a federally listed threatened, endangered or proposed species?

No

2. The proposed action does not intersect an area where the northern long-eared bat is likely to occur, based on the information available to U.S. Fish and Wildlife Service as of the most recent update of this key. If you have data that indicates that northern long-eared bats <u>are</u> likely to be present in the action area, answer "NO" and continue through the key.

Do you want to make a no effect determination?

Yes

PROJECT QUESTIONNAIRE

IPAC USER CONTACT INFORMATION

GM2 Associates, Inc. Agency: Name: Ethan Maskiell Address: 197 Loudon Road Address Line 2: Suite 310 City: Concord State: NH 03301 Zip: Email emaskiell@gm2inc.com Phone: 6038567854

LEAD AGENCY CONTACT INFORMATION

Lead Agency: Army Corps of Engineers

THE STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION

William Cass, P.E. Commissioner

RECEIVED DEC 2 9 2022

David Rodrigue, P.E. Assistant Commissioner Andre Briere, Colonel, USAF (RET) Deputy Commissioner

RECEIVED BUREAU OF ENVIRONMENT

JAN 0 9 2023

NH DEPARTMENT OF TRANSPORTATION

No Historic Properties Affected Memo

Pursuant to the Request for Project Review signed on July 9, 2019 and meetings and discussions on January 14, 2021, and for the purpose of compliance with regulations of the National Historic Preservation Act, the Advisory Council on Historic Preservation's *Procedures for the Protection of Historic Properties* (36 CFR 800), and the US Army Corps of Engineers' *Appendix C*; the NH Division of Historical Resources (SHPO) and the US Army Corps of Engineers (ACOE) have coordinated the identification and evaluation of cultural resources with plans to replace the bridge that carries NH Route 152 over the North River (Bridge No. 141/127) in Nottingham.

Project Description

This project would replace the NH Route 152 bridge over the North River (Bridge No. 141/127) in Nottingham. The existing bridge is a reinforced concrete jack-arch structure with a 17-foot span that was constructed in 1925 and rebuilt in 1970. The preferred alternative would replace the existing structure with a 30-foot span bridge. The preferred alternative also involves 200 feet of roadway widening on each side of the bridge to transition the additional three feet on each side of the roadway at each bridge approach back to the existing roadway. As currently proposed, the bridge would be closed during construction and traffic would be detoured.

Impacts would be limited to the area around the bridge, although some widening of the roadway is required. Easements would be required around the bridge and for slope impacts beyond the existing NHDOT right-ofway.

Analysis

Based on a review pursuant to 36 CFR 800.4, Bridge No 141/127 was found not eligible (NOT0025) for the National Register of Historic Places due to a lack of integrity. A Determination of Eligibility was received on July 16, 2019.

Since the project area is considered archaeologically sensitive, a combined Phase IA/IB archaeological assessment and investigation was completed. No evidence of pre-contact land use or intact Euro-American archaeological resources were found. SHPO concurred with the results of the survey and recommendation that no additional survey was required.

NOTTINGHAM 40612 RPR 10862

Two potentially historic properties are located southeast of the bridge, at 249 and 251 Stage Road (NH Route 152). For the preferred alternative, impacts near the two properties would be located within the NHDOT rightof-way and no tree clearing near the buildings is anticipated. As such, no impacts to these potentially historic properties are expected from the preferred alternative, and survey was not recommended.

Public Consultation

NHDOT initial contact letters were sent to the Town, including the Historical Society. Additional letters were sent to the NH Conservation Land Stewardship Program, the NH Land and Community Heritage Investment Program, and the NH Land and Water Conservation Fund, the Lamprey Rivers Advisory Committee, and the Strafford Regional Planning Commission. This project was also presented at a Public Officials Meeting on February 8, 2021 and a Public Informational Meeting on November 19, 2021.

Determination of Effect

Based on the project plans, ACOE has determined that there are no historic or archeological resources present in the permit area and that no additional information is needed.

Date

In accordance with the Advisory Council's regulations, we will continue to consult, as appropriate, as this project proceeds.

Judedel 12/27/2022

Jill Edelmann Cultural Resources Manager

Concurred with by the NH State Historic Preservation Officer:

115(2023 Date Tanie Mulle, DSHPO

Deputy State Historic Preservation Officer NH Division of Historical Resources

c.c. Michael Hicks, ACOE Rebecca Martin, NHDOT Jason Tremblay, NHDOT Jenn Riordan, GM2

US Army Corps of Engineers ®

of Engineers ® Appendix B New England District New Hampshire General Permits Required Information and USACE Section 404Checklist

USACE Section 404 Checklist

- 1. Attach any explanations to this checklist. Lack of information could delay a USACE permit determination.
- 2. All references to "work" include all work associated with the project construction and operation. Work
- includes filling, clearing, flooding, draining, excavation, dozing, stumping, etc.
- 3. See GC 3 for information on single and complete projects.
- 4. Contact USACE at (978) 318-8832 with any questions.
- 5. The information requested below is generally required in the NHDES Wetland Application. See page 61 for NHDES references and Admin Rules as they relate to the information below.

1. Impaired Waters	Yes	No
1.1 Will any work occur within 1 mile upstream in the watershed of an impaired water? See the following to determine if there is an impaired water in the vicinity of your work area. * https://nhdes-surface-water-quality-assessment-site-nhdes.hub.arcgis.com/ https://www.des.nh.gov/water/rivers-and-lakes/water-quality-assessment https://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx	Х*	
2. Wetlands	Yes	No
2.1 Are there are streams, brooks, rivers, ponds, or lakes within 200 feet of any proposed work?	X*	
2.2 Are there proposed impacts to tidal SAS, prime wetlands, or priority resource areas? Applicants may obtain information from the NH Department of Resources and Economic Development Natural Heritage Bureau (NHB) DataCheck Tool for information about resources located on the property at <u>https://www4.des.state.nh.us/NHB-DataCheck/</u> .	Х*	
2.3 If wetland crossings are proposed, are they adequately designed to maintain hydrology, sediment transport & wildlife passage?	Х	
2.4 Would the project remove part or all of a riparian buffer? (Riparian buffers are lands adjacent to streams where vegetation is strongly influenced by the presence of water. They are often thin lines of vegetation containing native grasses, flowers, shrubs and/or trees that line the stream banks. They are also called vegetated buffer zones.)		Х
2.5 The overall project site is more than 40 acres?		Х
2.6 What is the area of the previously filled wetlands?	~16,50	00 SF
2.7 What is the area of the proposed fill in wetlands?	538	3 SF
2.8 What % of the overall project sire will be previously and proposed filled wetlands?	~50	%
3. Wildlife	Yes	No
3.1 Has the NHB & USFWS determined that there are known occurrences of rare species, exemplary natural communities, Federal and State threatened and endangered species and habitat, in the vicinity of the proposed project? (All projects require an NHB ID number & a USFWS IPAC determination.) NHB DataCheck Tool: <u>https://www4.des.state.nh.us/NHB-DataCheck/</u> . USFWS IPAC website: <u>https://ipac.ecosphere.fws.gov/</u>	X*	

 3.2 Would work occur in any area identified as either "Highest Ranked Habitat in N.H." or "Highest Ranked Habitat in Ecological Region"? (These areas are colored magenta and green, respectively, on NH Fish and Game's map, "2010 Highest Ranked Wildlife Habitat by Ecological Condition.") Map information can be found at: PDF: <u>https://wildlife.state.nh.us/wildlife/wap-high-rank.html</u>. Data Mapper: <u>www.granit.unh.edu</u>. GIS: <u>www.granit.unh.edu/data/downloadfreedata/category/databycategory.html</u>. 	X*	
3.3 Would the project impact more than 20 acres of an undeveloped land block (upland, wetland/waterway) on the entire project site and/or on an adjoining property(s)?		Х
3.4 Does the project propose more than a 10-lot residential subdivision, or a commercial or industrial development?		Х
3.5 Are stream crossings designed in accordance with the GC 31?	Х	
4. Flooding/Floodplain Values	Yes	No
4.1 Is the proposed project within the 100-year floodplain of an adjacent river or stream?	X*	
4.2 If 4.1 is yes, will compensatory flood storage be provided if the project results in a loss of N/A - flood storage?	No substar storage an	ntial loss of ticipated
5. Historic/Archaeological Resources		
For a minimum, minor or major impact project - a copy of the RPR Form (www.nh.gov/nhdhr/review) with your DES file number shall be sent to the NH Division of Historical Resources as required on Page 37 GC 14(d) of the GP document**	х	
6. Minimal Impact Determination (for projects that exceed 1 acre of permanent impact)	Yes	No
 Projects with greater than 1 acre of permanent impact must include the following: Functional assessment for aquatic resources in the project area. On and off-site alternative analysis. Provide additional information and description for how the below criteria are met. 	N/A	
6.1 Will there be complete loss of aquatic resources on site?		
6.2 Have the impacts to the aquatic resources been avoided and minimized to the greatest extent practicable?		
6.3 Will all aquatic resource function be lost?		
6.4 Does the aquatic resource (s) have regional significance (watershed or ecoregion)?		
6.5 Is there an on-site alternative with less impact?		
6.6 Is there an off-site alternative with less impact?		
6.7 Will there be a loss to a resource dependent species?		
6.8 Are indirect impacts greater than 1 acre within and adjacent to the project area?		
6.9 Does the proposed mitigation replace aquatic resource function for direct, indirect, and cumulative impacts?		

*Although this checklist utilizes state information, its submittal to USACE is a federal requirement. ** If your project is not within Federal jurisdiction, coordination with NH DHR is not required under Federal law.

USACE Section 404 Checklist (Appendix B) Supplemental Information

- **1.1.** The segment of the North River within the project area (Assessment Unit ID NHRIV600030705-13) is listed as impaired for pH and mercury, based on a review of the NHDES 2020/2022 Surface Water Quality Assessment Viewer.
- **2.1.** The project involves the repair of the bridge that carries the NH Route 152 over the North River.
- **2.2.** The project proposes impacts to Priority Resource Areas (floodplain wetlands contiguous to a tier 3 watercourse and wetlands that have documented occurrences of protected species habitat).
- **3.1.** The NH Natural Heritage Bureau (NHB) Report (NHB23-3677) indicated that several state-listed species occur within the vicinity of the project area, including: climbing hempvine (endangered), American eel (special concern), Blanding's turtle (endangered), bridle shiner (threatened), northern black racer (threatened), spotted turtle (threatened), wood turtle (special concern). Of these, only Blanding's turtle has a recorded occurrence within the project area. No exemplary natural communities were included in the NHB report.

The USFWS IPaC report indicated that northern long-eared bat (NLEB) and monarch butterfly may occur within the project area. A No Effect Determination for NLEB was received using the Rangewide Determination Key in IPaC.

- **3.2.** The North River and adjacent wetlands within the project area are mapped as "Highest Ranked Habitat in NH".
- **4.2** The segment of the North River within the project area has a Zone A floodplain but there is no regulatory floodway, based on a review of the FEMA Flood Insurance Rate Map. The hydraulic analysis completed for the project indicated that the proposed bridge would provide the capacity to convey both the 100-year and 500-year flood without weir flow (i.e., flow overtopping the roadway or a controlling grade). For the 100-year flood, over 1 foot of freeboard would be provided. Outside of the roadway, the project would result in an estimated 100 cubic yards of fill within the Zone A floodplain. An estimated 55 cubic yards would be removed, so the project would result in a net fill of approximately 45 cubic yards within Zone A floodplain. Given the extensive floodplain within the surrounding area, this fill would not be expected to have a noticeable impact on overall flood storage.

Photo 1. View south toward the North River and Wetland 6 (Impact Areas A, B, C, and D) in the southeast bridge quadrant. Photo taken on 5/31/2019.

Photo 2. View northwest of Bridge No. 141/127, looking toward Impact Areas C and F (east/upstream side of bridge). Photo taken on 5/31/2019.

Photo 3. View north of downstream (west) side of Bridge No. 141/127, looking toward Impact Areas H, I, J, K, and L. Photo taken on 5/31/2019.

Photo 4. View south of Bridge No. 141/127, looking toward Impact Areas G, H, I, J, K, and L (west/downstream side of bridge). Photo taken on 5/31/2019.

Photo 5. View south toward Impact Areas M and N (Wetland 5), located in the southwest bridge quadrant. Photo taken on 5/31/2019.

Photo 6. View east of the North River upstream of project area. Photo taken on 5/31/2019.

Photo 7. View west of the North River downstream of the project area. Photo taken on 5/31/2019.

Photo 8. View north along NH Route 152 toward Bridge No. 141/127. Photo taken on 5/31/2019.

NH Route 152 over the North River Bridge Replacement Nottingham 40612

Construction Sequence

- 1. Install perimeter controls.
- 2. Perform necessary clearing operations for access and staging.
- 3. Install stream diversion and other sedimentation controls/BMPs as needed.
- 4. Close road and detour traffic.
- 5. Excavate for bridge foundations.
- 6. Install precast concrete footings and pedestal walls.
- 7. Install precast concrete rigid frame and wing walls.
- 8. Backfill structures.
- 9. Cast concrete overlay on top of rigid frame.
- 10. Construct roadway subgrade and pavement.
- 11. Install guardrail.
- 12. Stabilize disturbed areas.
- 13. Remove erosion and sedimentation control measures.

ORIGINAL GROUND WETLAND (TYPICALS) DELINEAT ORDINARY TOP OF BA ROCK OUTCROP TOP OF BA NORMAL H WIDTH AT PRIME WE1 *щщщщщщщщ* ROCK LINE PRIME WE1 (TYPICALS & SECTIONS ONLY) NON-JURIS COWARDIN PROPOSED existing TIDAL BUF bgr DEVELOPED GUARDRAIL (label type) HIGHEST MEAN HIGH _____H JERSEY BARRIER MEAN LOW VERNAL PO SPECIAL CURB (LABEL TYPE) REFERENCE WATER FRO NATURAL STONE WALL PROTECTED INVASIVE (points toward INVASIVE RETAINING WALL (LABEL TYPE) retained ground) _^__ FENCE (LABEL TYPE) ____//-_____//_____//____ 500 YEAR ___ (single post) ___ 100 YEAR SIGNS \rightarrow (double post) \rightarrow FLOODWAY ⊙ gp GAS PUMP \odot f + (label size & type) FUEL TANK (ABOVE GROUND) CONSTRUC PC, PT, ⊙ fc STORAGE TANK FILLER CAP PI (IN CO S SEPTIC TANK INTERSECT TWO LINES • gr GRAVE ORIGINAL (PROFILES • mb MAILBOX PROFILE (PROFILES VENT PIPE ΟVΡ da⁰ CLEARING SATELLITE DISH ANTENNA SLOPE LI 🛛 ph PHONE SLOPE LI SLOPE LIN -⇔gl -⊖ lp GROUND LIGHT/LAMP POST PROFILES AND CROSS SECTIONS: ⊕ _B BORING LOCATION ORIGINAL GROUND ELEVATION (LEFT) FINISHED GRADE ELEVATION (RIGHT) TEST PIT হন্ট INTERSTATE NUMBERED HIGHWAY 3 UNITED STATES NUMBERED HIGHWAY 102 STATE NUMBERED HIGHWAY

SHORELAND - WETLAND

DESIGNATION AND TYPE			
	D	PUB2E	— D III — — —
UICU WATED			O
		 	— — T O
ANN & URDINART HIGH WATER			w— —
DANK FULL	——————————————————————————————————————		
BANK FULL	— — — WBF — -		
	PWEI	——————————————————————————————————————	
LAND 100° BUFFER	——————————————————————————————————————	——————————————————————————————————————	
DICTIONAL DRAINAGE AREA	——————————————————————————————————————	——————————————————————————————————————	
DISTINCTION LINE		CDL	
FER ZUNE	——————————————————————————————————————	— — T B Z — —	— — T B
) IIDAL BUFFER ZONE	——————————————————————————————————————	——————————————————————————————————————	
JBSERVABLE TIDE LINE	——————————————————————————————————————	——————————————————————————————————————	
I WATER	— — — MHW— -	——————————————————————————————————————	
WATER	— — MLW— -	——————————————————————————————————————	
DOL	VP VP	VP VP	VP
QUATIC SITE	SAS	SAS	SAS
LINE	REF	REF	-R E F ———
INT BUFFER	wbso	——— wbso — -	
VOODLAND BUFFER	———— NWB150 —	NWB150	
) SHORELAND	———— — PS250 —	PS250 —	
		$ \frac{1}{1} \frac{1}{11} $	
SFELIES LADEL		·/ \••/	
SPECIES LABEL SPECIES FLOODPLA	AIN / FLC		- I NV ————
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY	AIN / FLC) O D W A Y 	0 0 — — 0 0 — —
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY	→INV →INV / FLC — - FP500- — - FP100- — - FW-) O D W A Y 	0 0 — — 0 0 — — — F W—
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY ENGIN	AIN / FLC — FP500- — FP100- — FW NEERING) O D W A Y 	0 0 — — 0 0 — — — F W—
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY ENGIN	AIN / FLC — FP500- — FP100- — FW NEERING) O D W A Y 	0 0 — — 0 0 — — — F W—
SPECIES SPECIES <u>FLOODPLAIN BOUNDARY</u> FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY <u>ENGIN</u> TION BASELINE POT (ON CONST BASELINE)	AIN / FLC ————————————————————————————————————) O D W A Y 	0 0 — — 0 0 — — — F W— 2
SPECIES LABEL SPECIES <u>FLOODPLAIN BOUNDARY</u> FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY <u>ENGIN</u> TION BASELINE POT (ON CONST BASELINE) DNSTRUCTION BASELINES)	<u>AIN / FLC</u> <u>FP500-</u> <u>FP100-</u> <u>FW</u> <u>NEERING</u> <u>H</u> <u>30</u> <u>30</u>) <u>ODWAY</u> 	0 0 — — 0 0 — — — F W— ?
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY ENGIN TION BASELINE POT (ON CONST BASELINE) DNSTRUCTION BASELINES) TION OR EQUATION OF	<u>AIN / FLC</u> <u>FP500-</u> <u>FP100-</u> <u>FW</u> <u>NEERING</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u>) <u>ODWAY</u> 	0 0 — — 0 0 — — — F W — 2
SPECIES LABEL SPECIES <u>FLOODPLAIN BOUNDARY</u> FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY <u>ENGIN</u> TION BASELINE POT (ON CONST BASELINE) ONSTRUCTION BASELINES) TION OR EQUATION OF GROUND LINE S AND CROSS-SECTIONS)	<u>AIN / FLC</u> <u>FP500-</u> <u>FP100-</u> <u>FW</u> <u>NEERING</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u> <u>J</u>		0 0 — — 0 0 — — — F W—
SPECIES SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY STON BASELINE POT (ON CONST BASELINE) ONSTRUCTION BASELINES) STON OR EQUATION OF GROUND LINE S AND CROSS-SECTIONS) GRADE LINE S AND CROSS-SECTIONS)	AIN / FLC ————————————————————————————————————	$\frac{OODWAY}{P} = -FPS$ $-FW = -FPI$ $\frac{OODWAY}{P} = -FW$ $\frac{OODWAY}{P} = -FPS$	0 0 — — 0 0 — — — F W — 2 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BASELINE FLOODPLAIN BASELINE FLOODP	AIN / FLC — FP500- — FP100- — FW NEERING 1 1 1 30 3	$\frac{OODWAY}{P} = -FPS}{P} = -FPS}{P}$	0 0 — — 0 0 — — — F W
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY MION BASELINE POT (ON CONST BASELINE) DNSTRUCTION BASELINES) TION OR EQUATION OF GROUND LINE S AND CROSS-SECTIONS) GRADE LINE S AND CROSS-SECTIONS) LINE	AIN / FLC 	$\frac{OODWAY}{P} = -FPS$ $-FW = -FPI$ $\frac{OODWAY}{P} = -FW$ $\frac{OODWAY}{P} = -FPS$ $\frac{OODWAY}{P} = -FPS$ $\frac{OODWAY}{P} = -FPS$ $\frac{OODWAY}{P} = -FPS$	0 0 — — 0 0 — — — F W— 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 5 4 4 4 5 4 5
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODP	AIN / FLC 	$\frac{OODWAY}{CLEARING}$	0 0 — — 0 0 — — — F W—
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY ENGIN TION BASELINE POT (ON CONST BASELINE) ONSTRUCTION BASELINES) TION OR EQUATION OF GROUND LINE S AND CROSS-SECTIONS) GRADE LINE S AND CROSS-SECTIONS) LINE NE (FILL)	AIN / FLC 	$\frac{OODWAY}{P} = -FPS}{PFP}$	0 0 — — 0 0 — — - F W
SPECIES LABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODP	$\frac{AIN / FLC}{$	$\frac{1}{1}$	
SPECIES EABEL SPECIES FLOODPLAIN BOUNDARY FLOODPLAIN BOUNDARY FLOODP	AIN / FLC 	$\frac{OODWAY}{OODWAY}$ $= - FPS$ $= - FW$ $1 32$ 0 $CLEARINO$ $CLEARINO$ $T T T T T T$ $un 1 T T T T T$	0 0 — — 0 0 — — — F W—

SHEET 1 OF 2

	STATE OF NEW HAMPSHIRE					
	DEPARTMENT OF TRANSPORTATION • BUREAU OF HIGHWAY DESIGN					
	STANDARD SYMBOLS					
REVISION DATE	DGN	STATE PROJECT NO.	SHEET NO.	TOTAL SHEETS		
11-21-2014	STDSYMB 1		2	10		

DRAINAGE

	UTILITIES		TRAFFIC SIGNALS / ITS				
	existing	PROPOSED		existing PROPOSED			
TELEPHONE POLE							
POWER POLE			MAST ARM (existing)	· · · · · · · · · · · · · · · · · · ·			
JOINT OCCUPANCY	-D (plo	t point at face center of symbol)	OPTICOM RECEIVER				
MISCELLANEOUS/UNKNOWN POLE			OPTICOM STROBE				
			TRAFFIC SIGNAL				
GUY POLE OR PUSH BRACE			PEDESTAL WITH PEDESTRIAN SIGNA HEADS AND PUSH BUTTON UNIT				
LIGHI POLE		$\psi \bullet$	SIGNAL CONDUIT	-ccc			
LIGHT ON POWER POLE		+	CONTROLLER CABINET	XCC XCC			
LIGHT ON JOINT POLE	-(_) (_		METER PEDESTAL				
		D.04	PULL BOX	□pb □PB			
POLE STATUS: REMOVE, LEAVE, PROPOSED, OR TEMPORARY AS APPLICABLE e.g.:		25.0'	LOOP DETECTOR (QUADRUPOLE)				
	· · ·		LOOP DETECTOR (RECTANGULAR)				
RAILROAD	(label ownership		CAMERA POLE (CCTV)				
RAILROAD SIGN	\times	\mathbf{X}	FIBER OPTIC DELINEATOR	ofod ⊙FOD			
RAILROAD SIGNAL		$\square \bigcirc \triangleleft$	FIBER OPTIC SPLICE VAULT				
UTILITY JUNCTION BOX	Хjb	⊠JB	ITS EQUIPMENT CABINET	SVF Mits MITS			
			VARIABLE SPEED LIMIT SIGN				
OVERHEAD WIRE	(label type)	OwOw	DYNAMIC MESSAGE SIGN				
UNDERGROUND UTILITIES			ROAD AND WEATHER INFO SYSTEM	\sim \bullet \bullet			
WATER label size, type and note if abandoned)	w w		CONSTRUC	TION NOTES			
SEWER	S S	PSPS	CURB MARK NUMBER - BITUMINOUS	B-1			
TELEPHONE	T T	—— PT ——— PT ———	CURB MARK NUMBER - GRANITE	G-1			
ELECTRIC	——— E ———— E ——	РЕРЕ	CLEARING AND GRUBBING AREA				
GAS	G G	PGPG	DRAINAGE NOTE	$\langle 1 \rangle$			
LIGHTING	L L	—— PL ——— PL ———	EROSION CONTROL NOTE				
INTELLIGENT TRANSPORTATION SYSTEM	ITSITSITS	— — PITS — — PITS —	FENCING NOTE	Α			
FIBER OPTIC	———F0———F0—	— PF 0 — PF 0 —	GUARDRAIL NOTE	1			
WATER SHUT OFF	wso O	*So	ITS NOTE	(1)			
GAS SHUT OFF	gso	s S O					
HYDRANT	$\mathbf{\tilde{\mathbf{v}}}$	$\mathbf{\hat{O}}$					
MANHOLES	//y0	γγ V	TRAFFIC SIGNAL NOTE	1 SHEFT 2 OF 2			
SEWER		MHS		STATE OF NEW HAMPSHIRF			
TELEPHONE		МНТ	DEPART	IMENT OF TRANSPORTATION • BUREAU OF HIGHWAY DESIGN			
ELECTRICAL		MHE		STANDARD SYMROIS			
GAS		M H G					
UNKNOWN			REVISION DATE 9-1-2016 STDS	DGNSTATE PROJECT NO.SHEET NO.TOTAL SHEETSSYMB 2310			

1. Erosion Control/Stormwater Control Selection, Sequencing and Maintenance

1.1. Comply with RSA 485-A:17 Terrain Alteration.

1.2. Install and maintain all erosion control/stormwater controls in accordance with the New Hampshire Stormwater Management Manual, Volume 3, Erosion and Sediment Controls During Construction, December 2008 (BMP Manual), available from the NH Department of Environmental Services (NHDES).

1.3. Install erosion control/stormwater control measures prior to the start of work and in accordance with the manufacturer's recommendations.

1.4. Select erosion control/stormwater control measures based on the size and nature of the project and physical characteristics of the site, including slope, soil type, vegetative cover, and proximity to jurisdictional areas.

1.5. Install perimeter controls prior to earth disturbing activities.

1.6. Install stormwater treatment ponds and drainage swales before rough grading the site.

1.7. Clean, replace, and augment stormwater control measures and infiltration basins as necessary to prevent sedimentation beyond project limits throughout the project duration.

- 1.8. Inspect erosion and sediment control measures in accordance with Section 645 of the specifications, weekly, and within 24 hours (during normal work hours), of any storm event greater than 0.25 inches of rain in a 24-hour period.
- 1.9. Contain stockpiles with temporary perimeter controls. Protect inactive soil stockpiles with soil stabilization measures (temporary erosion control seed mix and mulch, soil binder) or cover them with anchored tarps. If the stockpile is to remain undisturbed for more than 14 days, mulch the stockpile.

1.10.Maintain temporary erosion and stormwater control measures in place until the area has been permanently stabilized. 1.11.An area is considered stable if one of the following has occurred:

Base course gravels have been installed in areas to be paved;

• A minimum of 85% vegetative growth has been established;

- A minimum of 3" of non-erosive material such as stone or rip-rap has been installed;

Temporary slope stabilization has been properly installed (see Table 1).

1.12.Direct runoff to temporary practices until permanent stormwater infrastructure is constructed and stabilized. 1.13. Use temporary mulching, permanent mulching, temporary vegetative cover, and permanent vegetative cover to reduce the need for dust control.

Use mechanical sweepers on paved surfaces where necessary to prevent dust buildup. Apply water, or other dust inhibiting agents or tackifiers. 1.14.Plan activities to account for sensitive site conditions

• Sequence construction to limit the duration and area of exposed soils.

- Clearly flag areas to be protected in the field and provide construction barrier to prevent trafficking outside of work areas.
- Protect and maximize existing native vegetation and natural forest buffers between construction activities and sensitive areas.

• When work is undertaken in a flowing watercourse, implement stream flow diversion methods prior to any excavation or filling activity. 1.15.Utilize storm drain inlet protection to prevent sediment from entering a storm drainage system prior to the permanent stabilization of the contributing disturbed area.

1.16.Use care to ensure that sediments do not enter any existing catch basins during construction. Place temporary inlet protection at inlets in areas of soil disturbance that are subject to sedimentation.

1.17 Construct, stabilize, and maintain temporary and permanent ditches in a manner that will minimize scour. Direct temporary and permanent ditches to drain to sediment basins or stormwater collection areas.

1.18. Supplement channel protection measures with perimeter control measures when ditch lines occur at the bottom of long fill slopes. Install the perimeter controls on the fill slope to minimize the potential for fill slope sediment deposits in the ditch line.

- 1.19.Divert sediment laden water away from drainage inlet structures to the extent possible.
- 1.20.Install sediment barriers and sediment traps at drainage inlets to prevent sediment from entering the drainage system. 1.21.Clean catch basins, drainage pipes, and culverts if significant sediment is deposited.
- 1.22.Construct and stabilize dewatering infiltration basins prior to any excavation that may require dewatering. 1.23. Place and stabilize temporary sediment basins or traps at locations where concentrated flow (channels and pipes) discharge to the surrounding environment from areas of unstabilized earth disturbing activities.
- 1.24. Stabilize, to appropriate anticipated velocities, conveyance channels or pumping systems needed to convey construction stormwater to basins and discharge locations prior to use.
- 1.25.Size temporary sediment basins to contain the 2-year, 24 hour storm event.

1.26.Size temporary sediment traps to contain 3,600 cubic feet of storage for each acre of drainage area.

1.27.Construct detention basins to accommodate the 2-year, 24-hour storm event.

2. Construction Planning

- 2.1. Divert off site runoff or clean water away from the construction activities to reduce the volume that needs to be treated on site. 2.2. Divert storm runoff from upslope drainage areas away from disturbed areas, slopes and around active work areas to a stabilized outlet location
- 2.3. Construct impermeable barriers, as necessary, to collect or divert concentrated flows from work or disturbed areas.
- 2.4. Locate staging areas and stockpiles outside of wetlands jurisdiction.
- 2.5. Do not store, maintain, or repair mobile heavy equipment in wetlands, unless equipment cannot be practicably removed and secondary containment is provided.
- 2.6. Provide a water truck to control excessive dust, at the discretion of the Contract Administrator.

3. Site Stabilization

- 3.1. Stabilize all areas of unstabilized soil as soon as practicable, but no later than 45 days after initial disturbance. 3.2. Limit unstabilized soil to a maximum of 5 acres unless documentation is provided that demonstrates that cuts and fills are such that 5 acres is unreasonable.
- 3.3. Use erosion control seed mix in all inactive construction areas that will not be permanently seeded within two weeks of disturbance and prior to September 15" of any given year in order to achieve vegetative stabilization prior to the end of the growing season
- 3.4. Apply, and reapply as necessary, soil tackifiers in accordance with the manufacturer's specifications to minimize soil and mulch loss until permanent vegetation is established.
- 3.5. Stabilize basins, ditches and swales prior to directing runoff to them.
- 3.6. Stabilize roadway and parking areas within 72 hours of achieving finished grade.
- 3.7. Stabilize cut and fill slopes within 72 hours of achieving finished grade.
- 3.8. When temporarily stabilizing soils and slopes, utilize the techniques outlined in Table 1.
- 3.9. Stabilize all areas that can be stabilized prior to opening up new areas to construction activities. 3.10.Utilize Table 1 when selecting temporary soil stabilization measures.

3.11 Divert off-site water through the project in an appropriate manner so as not to disturb the upstream or downstream soils, vegetation or hydrology beyond the permitted area.

3.12 Install and maintain construction exits anywhere traffic leaves a construction site onto a public right-of-way. 3.13. Sweep all construction related debris and soil from the adjacent paved roadways, as necessary.

EROSION CONTROL NOTES AND STRATEGIES

- 4 Slope Protection
 - to a stabilized outlet or conveyance.
 - 4.2. Consider how groundwater seepage on cut slopes may impact slope stability and incorporate appropriate measures to minimize erosion.
 - 4.3. Convey storm water down the slope in a stabilized channel or slope drain.
 - 4.4. The outer face of the fill slope should be in a loose, ruffled condition prior to turf establishment.
- 5. Winter Construction
 - 5.1. To minimize erosion and sedimentation impacts, limit the extent and duration of winter excavation and earthwork activities. environmental requirements will be met.
 - after October 15^{°°}, in accordance with Table 1.
 - after October 15^{°°}, in accordance with Table 1
 - after November 30°, in accordance with Table 1.

 - 1 acre of the project is without stabilization an any one time.
- 6. Wildlife Protection Measures
 - at 603-271-3226 or by email at Bureau16@dot.nh.gov, indicating in the subject line the project name, number, and that a threatened/endangered species was found.
 - Bureau of Environment at the above email address.
 - handled, or harmed prior to receiving direction from the Bureau of Environment.
 - 6.4. Utilize wildlife friendly erosion control methods when: Erosion control blankets are used,
 - A protected species or habitat is documented,
 - The proposed work is in or adjacent to a priority resource area, and/or when specifically requested by NHB or NHF&G

GUIDANCE ON SELECTING TEMPOR

APPLICATION AREAS		DRY MULCI	H METHODS	5	HYDRAU	LICALLY A	APPLIED M	ULCHES ²	ROLLED	EROSION	CONTROL	BLANKETS ³
	НМТ	WC	SG	СВ	НМ	SMM	BFM	FRM	SNSB	DNSB	DNSCB	DNCB
SLOPES ¹												
STEEPER THAN 2:1	NO	NO	YES	NO	NO	NO	NO	YES	NO	NO	NO	YES
2:1 SLOPE	YES1	YES1	YES	YES	NO	NO	YES	YES	NO	YES	YES	YES
3:1 SLOPE	YES	YES	YES	YES	NO	YES	YES	YES	YES	YES	YES	NO
4:1 SLOPE	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	NO	NO
WINTER STABILIZATION	4T/AC	YES	YES	YES	NO	NO	YES	YES	YES	YES	YES	YES
CHANNELS			•	•							•	
LOW FLOW CHANNELS	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	YES	YES
HIGH FLOW CHANNELS	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	YES

ABBREV.	STABILIZATION MEASURE	ABBREV.	STABILIZATION MEASURE	ABBREV.	STABILIZATION MEASURE
НМТ	HAY MULCH & TACK	НМ	HYDRAULIC MULCH	SNSB	SINGLE NET STRAW BLANKET
WC	WOOD CHIPS	SMM	STABILIZED MULCH MATRIX	DNSB	DOUBLE NET STRAW BLANKET
SG	STUMP GRINDINGS	BFM	BONDED FIBER MATRIX	DNSCB	2 NET STRAW-COCONUT BLANKET
СВ	COMPOST BLANKET	FRM	FIBER REINFORCED MEDIUM	DNCB	2 NET COCONUT BLANKET

NOTES:

1. All slope stabilization options assume a slope length \leq 10 times the horizontal distance component of the slope, in feet. 2. Do not apply products containing polyacrylamide (PAM) directly to, or within 100 feet of any surface water without NHDES approval. 3. Install all methods in Table 1 per the manufacturer's recommendation for time of year and steepness of slope.

4.1. Intercept and divert storm runoff from upslope drainage areas away from unprotected and newly established areas and slopes

The maximum amount of disturbed earth shall not exceed a total of 5 acres from May 1" through November 30", or exceed one acre during winter months, unless the contractor demonstrates to the Department that the additional area of disturbance is necessary to meet the contractor's Critical Path Method (CPM) schedule, and the contractor has adequate resources available to ensure that

5.2. Construction performed any time between November 30" and May 1" of any year is considered winter construction. During winter construction: • Stabilize all proposed vegetation areas which do not exhibit a minimum of 85% vegetative growth by October 15^{*}, or which are disturbed

• Stabilize all ditches or swales which do not exhibit a minimum of 85% vegetative growth by October 15", or which are disturbed

• Protect incomplete road surfaces, where base course gravels have not been installed, and where work has stopped for the season

• Unless a winter construction plan has been approved by NHDOT, conduct winter excavation and earthwork such that no more than

6.1. Report all observations of threatened and endangered species on the project site to the Department's Bureau of Environment by phone

6.2. Photograph the observed species and nearby elements of habitat or areas of land disturbance and provide them to the Department's

6.3. In the event that a threatened or endangered species is observed on the project during work, the species shall not be disturbed,

ARY Ble	SOIL 1	ST	ABILIZA	TION	MEASU	RES	
	TCAL			MIII	CHEC 2		FD

		STATE OF	F NEW HAMPS	SHIRE	
		DEPARTMENT OF TRANSPORTAT	ION • BURI	Eau of highwa	Y DESIGN
		EROSION CONTRO	OL NOTES AI	ND STRAT	EGIES
	REVISION DATE	DGN	STATE PROJECT NO.	SHEET NO.	TOTAL SHEETS
erosstrat-ce	07-31-2023	erostrat-ce	40612	5	10

CENEDAL DI ANI AND ELEVATION										
GENERAL PLAN AND ELEVATION										
REVISIONS AFTER PROPOSAL			BY	Y DATE		BY	DATE			
		DESIGNED	BJL	. 11/22	CHECKED	TPL	08/23	FILE NUMBER		
		DRAWN	BJL	. 11/22	CHECKED	TPL	08/23			
		QUANTITIES	ZJC	G 08/23	CHECKED	BJL	08/23			
		ISSUE DATE		FEDERAL	PROJECT NO.	SH	EET NO.	TOTAL SHEETS		
		REV. DATE					8	10		

VIN							
SECTION	BRIDGE SHEET						
REVISIONS AFTER PROPOSAL		BY	DATE		BY	DATE	_ OF _
	DESIGNED	BJL	01/24	CHECKED	TPL	01/24	FILE NUMBER
	DRAWN	BJL	01/24	CHECKED	TPL	01/24	
	QUANTITIES	-	-	CHECKED	-	-	
	ISSUE DATE		FEDERAL	PROJECT NO.	SHE	ET NO.	TOTAL SHEETS
	REV. DATE					10	10