Appendix C: Traffic Technical Report

EXIT 4A - Traffic and Transportation Technical Report

I-93 Exit 4A Supplemental Draft Environmental Impact Statement

Prepared for:
Town of Derry
Town of Londonderry
New Hampshire Department of Transportation

Prepared by:
Fuss and O'Neill, Inc.

Final Version
October, 2018

NHDOT Project Number: 13065
Federal Project Number: IM 0931(201)
Fuss \& O’Neill Project Number 05-0244

Table of Contents

1.0 Introduction
2.0 Purpose and Need for the Project
3.0 Traffic Data Collection
3.1 Traffic Counts
3.2 Existing Signal Information - Timing and Phasing
3.3 Crash Data - 2010-2014 - Data Reduction and Summary
4.0 Development of Base Traffic Networks
5.0 Model Calibration
6.0 Capacity Analyses - 2015 Base Conditions
6.1 Mainline Interstate Operations
6.1.1 Mainline Freeway Segments
6.1.2 Merge/Diverge Operations
6.1.3 Weaving Operations

Signalized Intersection Operations - 2015 Base Condition
8.0 Unsignalized Intersection Operations
9.0 Summary of SNHPC Model Assignments - 2015, 2040
9.1 AAWDT Comparisons - 2040
9.1.1 No-Build Conditions
9.1.2 Alternative A
9.1.3 Alternative B
9.1.4 Alternative C
9.1.5 Alternative D
9.1.6 Alternative F
9.2 Composition of Through Traffic in Downtown Derry
9.3 Comparison to I-93 SEIS 2030 Mainline Projections
10.0 Derivation of 2040 Volumes for Analysis Purposes
10.1 Mainline Interstate Volumes
10.2 Local Intersection Volumes

Table of Contents (Continued)

11.0 Analysis of Interstate Operations
12.0 Estimated Contribution of Woodmont Commons Traffic to Interstate Ramp Volumes
13.0 Exit 4A and Connecting Roadways
14.0 Analysis of Local Intersection Operations
15.0 Signalized Intersections
16.0 Unsignalized Intersections
17.0 Findings and Conclusions
18.0 References

Tables

1. ATR Count Summary - Adjusted 2015 AAWDT and Peak Hour Volumes
2. Exit 4A Study Area Crash Data Summary - 2010-2014
3. HCS 2010 - Freeway Facilities Analysis - 2015 Base AM and PM Peak Hours
4. Summary of 2015 Signalized Intersection Capacity Analyses
5. 2015 Signalized Intersection Capacity and Queuing Analyses
6. Unsignalized Intersection Capacity and Queuing Analyses
7. Adjusted 2040 AAWDT Volume Comparison - All Alternatives
8. Select Link Analysis - NH102, East of Griffin Road, Derry, NH
9. Comparison of I-93 SEIS and Exit 4A SDEIS Traffic Projections 2020, 2030 and 2040 Design Years, Including Exit 4A
10. HCS 2010 - Freeway Facilities Analysis - 2040 No-Build and Build (South Interchange) Cases - AM and PM Peak Hours
11. Summary of 2040 Capacity Analyses by Alternatives
12. Summary of 2040 Capacity Analyses by Alternative

Figures

2 Traffic Count Locations
3 I-93 Exit 4A Supplemental Draft EIS - Zones 1-6 Locus Map
42015 No-Build AM Peak Hour Base Volumes - Locations 1-4
52015 No-Build PM Peak Hour Base Volumes - Locations 1-4
62015 No-Build AM Peak Hour Base Volumes - Locations 5-19 and 26-27
72015 No-Build PM Peak Hour Base Volumes - Locations 5-19 and 26-27
8 Volume Comparisons - Exit 4 Ramps
9 Volume Comparisons - Exit 5 Ramps
10 Volume Comparisons - Exit 4A Ramps
11 Volume Comparisons - NH Route 102 Corridor
12 Volume Comparisons - Other Local Streets
13 SNHPC Traffic Analysis Zones - Derry, NH
14 SNHPC Traffic Analysis Zones - Region Wide
152040 No-Build AM Peak Hour Base Volumes - Locations 1-4
162040 No-Build PM Peak Hour Base Volumes - Locations 1-4
172040 Alternative A AM Peak Hour Base Volumes - Locations 1-4 and 20-21
182040 Alternative A PM Peak Hour Base Volumes - Locations 1-4 and 20-21
192040 Alternative B AM Peak Hour Base Volumes - Locations 1-4 and 20-21
202040 Alternative B PM Peak Hour Base Volumes - Locations 1-4 and 20-21
212040 Alternative C AM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
222040 Alternative C PM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
232040 Alternative D AM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
242040 Alternative D PM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
252040 Alternative F AM Peak Hour Base Volumes - Locations 1-4
262040 Alternative F PM Peak Hour Base Volumes - Locations 1-4

2040 No-Build PM Peak Hour Base Volumes - Locations 5-19 and 26-27
2040 Alternative A AM Peak Hour Base Volumes - Locations 5-19 and 26-27
2040 Alternative A PM Peak Hour Base Volumes - Locations 5-19 and 26-27
2040 Alternative B AM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27
2040 Alternative B PM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27
2040 Alternative C AM Peak Hour Base Volumes - Locations 5-19 and 22-27

342040 Alternative C PM Peak Hour Base Volumes - Locations 5-19 and 22-27
352040 Alternative D AM Peak Hour Base Volumes - Locations 5-19 and 25-27
362040 Alternative D PM Peak Hour Base Volumes - Locations 5-19 and 25-27
372040 Alternative F AM Peak Hour Base Volumes - Locations 5-19 and 26-27
382040 Alternative F PM Peak Hour Base Volumes - Locations 5-19 and 26-27

Appendices

Appendix A: Traffic Count Data
Appendix B: Seasonal, Annual and Axle Correction Factors
Appendix C: Interstate Counts and Balancing Calculations at Ramp Terminals
Appendix D: Travel Demand Forecast Model Development and Calibration Report Southern NH Planning Commission, January 2018

Appendix E: HCM 2010 LOS Criteria
Appendix F: HCS 2010 Freeway Facility Analyses - 2015 Base
Appendix G-1: HCM and SYNCHRO Printouts - Signalized Intersection Capacity Analyses - 2015 AM Peak Hours - SYNCHRO Printouts

Appendix G-2: HCM and SYNCHRO Printouts - Signalized Intersection Capacity Analyses - 2015 PM Peak Hours - SYNCHRO Printouts

Appendix G-3: HCM Printouts - Signalized Intersection Capacity Analyses - 2015 AM and PM Peak Hours

Appendix H: Google Maps Printout of Traffic Conditions - Derry area - January 2018
Appendix I: HCM Printouts - Unsignalized Intersection Capacity Analyses - 2015 AM and PM Peak HCM Printouts
Appendix J: 2040 AWDT Peak Hour Volumes
Appendix K: Procedure to Estimate TMC from AWDT
Appendix L: HCS Freeway Facility Appendix
Appendix M: Estimate of Contribution of Woodmont Commons Traffic to Exits 4 and 4A
Appendix N-1: 2040 No-Build Intersection Capacity Analyses - HCM 2000 Printouts - AM Peak Hour
Appendix N-2: 2040 No-Build Intersection Capacity Analyses - HCM 2000 Printouts - PM Peak Hour

Appendix N-3: 2040 No-Build Intersection Capacity Analyses - SYNCHRO Printouts - AM Peak Hour
Appendix N-4: 2040 No-Build Intersection Capacity Analyses - SYNCHRO Printouts - PM Peak Hour
Appendix O-1: 2040 Alternative A Intersection Capacity Analyses - HCM 2000 Printouts AM Peak Hour

Appendix O-2: 2040 Alternative A Intersection Capacity Analyses - HCM 2000 Printouts PM Peak Hour

Appendix O-3: 2040 Alternative A Intersection Capacity Analyses - SYNCHRO Printouts AM Peak Hour

Appendix O-4:	2040 Alternative A Intersection Capacity Analyses - SYNCHRO Printouts PM Peak Hour
Appendix P-1:	2040 Alternative B Intersection Capacity Analyses - HCM 2000 Printouts AM Peak Hour
Appendix P-2:	2040 Alternative B Intersection Capacity Analyses - HCM 2000 Printouts PM Peak Hour
Appendix P-3:	2040 Alternative B Intersection Capacity Analyses - SYNCHRO Printouts AM Peak Hour
Appendix P-4:	2040 Alternative B Intersection Capacity Analyses - SYNCHRO Printouts PM Peak Hour
Appendix Q-1:	2040 Alternative C Intersection Capacity Analyses - HCM 2000 Printouts AM Peak Hour
Appendix Q-2:	2040 Alternative C Intersection Capacity Analyses - HCM 2000 Printouts PM Peak Hour
Appendix Q-3:	2040 Alternative C Intersection Capacity Analyses - SYNCHRO Printouts AM Peak Hour
Appendix Q-4:	2040 Alternative C Intersection Capacity Analyses - SYNCHRO Printouts PM Peak Hour
Appendix R-1:	2040 Alternative D Intersection Capacity Analyses - HCM 2000 Printouts AM Peak Hour
Appendix R-2:	2040 Alternative D Intersection Capacity Analyses - HCM 2000 Printouts PM Peak Hour
Appendix R-3:	2040 Alternative D Intersection Capacity Analyses - SYNCHRO Printouts AM Peak Hour
Appendix R-4:	2040 Alternative D Intersection Capacity Analyses - SYNCHRO Printouts PM Peak Hour
Appendix S-1:	2040 Alternative F Intersection Capacity Analyses - HCM 2000 Printouts AM Peak Hour
Appendix S-2:	2040 Alternative F Intersection Capacity Analyses - HCM 2000 Printouts PM Peak Hour
Appendix S-3:	2040 Alternative F Intersection Capacity Analyses - SYNCHRO Printouts AM Peak Hour
Appendix S-4:	2040 Alternative F Intersection Capacity Analyses - SYNCHRO Printouts PM Peak Hour

1.0 Introduction

The Interstate 93 (I-93) Exit 4A Project (the "Project") involves a new diamond interchange between Interstate 93 Exits 4 and 5 in the Town of Londonderry, approximately one mile north of Exit 4. The new diamond interchange would provide access to the east side of I-93 only. A 1-mile connector roadway would be built on new alignment from the interchange to Folsom Road, near the intersection of North High Street and Madden Road, in the Town of Derry. Folsom Road, and subsequently Tsienneto Road, would be upgraded, and the intersections would be improved.

The Project was the subject of a Draft Environmental Impact Statement (DEIS) in 2007 (FHWA, 2007). Due to the amount of time that has elapsed since the 2007 DEIS, the FHWA has requested the preparation of updated studies that will be documented in a Supplemental Draft Environmental Impact Statement (SDEIS) in accordance with the National Environmental Policy Act (NEPA). The SDEIS will provide an up-to-date assessment of the environmental effects of the Project and the evaluation of reasonable alternatives that will consider updated information including, but not limited to, traffic, socioeconomic projections, land development proposals in the project area, and changes in environmental resources and regulatory requirements.

The purpose of this report is to document the development of traffic projections and operational analyses for the Project as part of the SDEIS. This report is a compilation of previous memoranda issued as the project proceeded as well as to present the findings of the analyses of the various alternatives.

The traffic analysis tasks described in this report includes the following:

- Collection of traffic count data at various roadways and intersections in the Exit 4A study area to develop 2015 Average Weekday Traffic (AWDT) volumes.
- Use of these 2015 counts to calibrate the Southern New Hampshire Planning Commission (SNHPC)'s regional traffic model to be viable to project future traffic volumes in the 2040 design year with and without the proposed Exit 4A.
- Preparation of land use and socioeconomic projections (conducted concurrently by the Land Use Working Group) for the SNHPC model area and allocated to the Traffic Analysis Zone (TAZ) level for each alternative scenario to be used as the basis for traffic generation and trip assignments to the regional roadway network.
- Development of 2040 No-Build (without Exit 4A) and Build (with Exit 4A) traffic volume assignments on key roadway segments and intersections in the study area network.
- Derivation of AM and PM peak hour traffic volumes on the mainline I-93 and interchange ramps as well as key segments and intersections in the study area for the various Exit 4A alternative layouts for analysis purposes (see Figure 1).
- Analysis of interstate operations using the 2010 Highway Capacity Manual (TRB, 2010) Freeway Facilities methodologies for the existing 2015 and all 2040 NoBuild and Build scenarios. Analysis of signalized and unsignalized intersection operations of the existing 2015 and all 2040 scenarios using HCM methodologies and emulated in the SYNCHRO/Sim-Traffic (Trafficware, 2016)software for
derivation of Level of Service and estimated queue lengths for conceptual design purposes.

In addition to the traffic data collection, Project Team specialists and the Land Use Working Group conducted interviews and compiled socioeconomic (e.g., population and employment) projections that were used by the SNHPC to allocate these trip-generation characteristics to their traffic zone system to generate traffic assignments to the roadway network under both No-Build (without 4A) and the Build alternatives that were included in the DEIS from 2007. A separate Land Use Scenario Technical Report was prepared that documents the land use and socioeconomic forecasting efforts that were used in conjunction with the traffic modeling. (Louis Berger, 2017).

2.0 Purpose and Need for the Project

The Purpose and Need for the Project, as described in the 2007 DEIS, is as follows:

- Providing for transportation improvements that will promote the safe and efficient movement of people, goods, and services between I-93 and the towns served by NH Route 102, specifically Derry and Londonderry, that are immediately adjacent to I-93 Exit 4;
- Providing an alternative route to the Interstate system for traffic using NH Route 102 to and from the east, thus removing a large volume of through traffic from the heavily congested downtown Derry street network;
- Providing improved Interstate access for commercially and industrially zoned lands near NH Routes 28 and 102 in both Derry and Londonderry, thus allowing for the planned and orderly development of such lands to further locally-defined economic development goals and tax base diversification; and
- Enhancing and promoting the economic vitality of the downtown Derry area, presently characterized by traffic congestion and decreasing vehicular and pedestrian safety, by separating local destination-oriented traffic from throughtraffic destined for the Interstate system.

For purposes of this project, the downtown Derry area has been defined as NH Route 102 easterly from its intersection with Fordway to the NH 28 (Crystal Avenue/Birch Street) intersection (CLD|Fuss \& O'Neill, 2018). This is also consistent with the defined Central Business District zoning map for the Town of Derry (Town of Derry, 2015).

3.0 Traffic Data Collection

The study area for the Project was established and agreed upon as part of the 2007 DEIS document, and encompasses the expected extent of the roadway network that would likely be influenced by the introduction of a new I-93 interchange and associated connector roadways. An updated inventory of the key area roadways and intersections was conducted to ensure that the traffic modeling and subsequent analyses reflect existing conditions.

The various contracts for the I-93 widening project affecting the study area also needed to be considered. The Exit 5 improvements are already in place, and the Exit 4 interchange is being reconstructed now as part of Contract 14633-D. The widening of the mainline I93 to four lanes between Exits 4 and 5 under Contracts 'D' and ' I ' is also underway.

3.1 Traffic Counts

The traffic counting program was developed for the project, based on the key roadway segments and intersections in the study area, to assist in the development of 2015 base Average Annual Weekday Traffic (AAWDT) volumes for use in the traffic model calibration. Most of these locations were counted in 2005 as part of the preparation of the original 2007 DEIS document. This effort was coordinated with the annual traffic counting programs conducted by both the NHDOT and SNHPC within the study area, and the new data collected in May and June of 2016 while school was still in session. Some of these locations had already been counted in 2014 or 2015 (NHDOT, 2016a, 2016b, 2016c), so all data was evaluated and subsequently adjusted to reflect 2015 AAWDT conditions.

The Automatic Traffic Recorder (ATR) counts were taken for a 3-5 day period. A listing of the locations is included below and shown in Figure 2.

Interstate Locations (15)

I-93 NB and SB, south of Exit 4 (NHDOT permanent recorder)
I-93 Exit 4 - NB and SB on- and off-ramps (5)
I-93 Exit 5 - NB and SB on- and off-ramps (4)
I-93 NB and SB between Exits 4 and 5 (2)
I-93 NB and SB north of Exit 5 (2)

State Highways/Local Streets (22)

Crystal Avenue (NH Route 28), south of Tsienneto Road
Folsom Road, west of NH Route 28
Pinkerton Street, east of Tsienneto Road
Tsienneto Road, east of Pinkerton Street
Chester Road (NH Route 102), east of NH Route 28 Bypass (Sylvestri Circle)
North Main Street (NH Route 28 Bypass), north of Pinkerton Street (Academy Drive)
North Main Street (NH Route 28 Bypass), north of Tsienneto Road
South Main Street (NH Route 28 Bypass), south of Thornton Street
Tsienneto Road, west of NH Route 102
NH Route 102, at Derry Town line
NH Route 28, at Derry/Londonderry Town line
Gilcreast Road, north of NH Route 102
NH Route 102, west of Abbot Street
NH Route 102, east of Griffin Street
Fordway, over Beaver Brook

Franklin Street, north of Folsom Road
Ash Street at Londonderry Town line
Ash Street, east of Londonderry Road
NH Route 28, east of Perkins Road
NH Route 28, south of Rollins Street
NH Route 28, north of Liberty Drive
NH Route 102, east of Hampton Drive
Intersection Turning Movement Counts (TMCs) - AM and PM Peak Periods (19)
The intersection counts were taken in groups of intersections within five general groups or 'zones' in close proximity to each other to facilitate ease of data collection and to minimize significant differences between locations, even if there were intervening roadways or driveways that would not allow balancing between sites. These groups of intersections were numbered as follows and shown in Figure 3:

Zone 1

\#3 Exit 5 SB ramps
\#4 Exit 5 NB ramps

Zone 2
\#1 Exit 4 SB ramps
\#2 Exit 4 NB ramps

Zone 3

\#5 NH Route 102/Londonderry Road/St. Charles Street
\#6 NH Route 102 (Broadway)/Fordway/Madden Hill Road
\#7 NH Routes 102/28 (Crystal Avenue/Broadway/Birch Street)
\#8 North High Street/Ash Street Extension
\#9 North High Street/Madden Road
\#10 North High Street/Folsom Road/Franklin Street/Franklin Street Extension
Zone 4
\#11 NH Route 28/Folsom Road/Tsienneto Road (Ross' Corner)
\#12 Tsienneto Road/Pinkerton Street
\#13 NH Route 28/Linlew Drive
\#14 NH Route 28/Ashleigh Drive
\#15 NH Route 28/Scobie Pond Road
Zone 5
\#16 NH Routes 102/28 Bypass/East Derry Road (traffic circle)
\#17 NH Route 28 Bypass/Pinkerton Street/Nesmith Street
\#18 NH Route 28 Bypass/Tsienneto Road
\#19 NH Route 102/Tsienneto Road
Copies of the relevant raw traffic count data are included in Appendix A.
Other new intersections that would be created by some of the Exit 4A alternatives will also need to be evaluated and analyzed. In addition, it was determined as the study progressed that additional intersections at the east end of the study area should be
collected, since they will be influenced by any improvements at the NH Route 102/Tsienneto Road intersection. These intersections were at NH Route 102/North Shore Road (\#26) and at NH Route 102/English Range Road (\#27). This data is also included in Appendix A.

Adjustment Factors used for Data Reduction

Because of the nature of the regional roadway network, there are several different adjustment factors that need to be applied to the raw counts to derive AWDT. In general, there are seasonal factors, annual growth factors, and axle correction factors, based on the type of roadway being considered. NHDOT develops these factors for various roadway types based on their evaluation of permanent traffic recorder stations across the state. NHDOT differentiates between Rural and Urban Interstates (called Groups 1 and 3, respectively), as well as Rural and Urban Highways (Groups 2 and 4, respectively), for which there is a wealth of short-term and long-term factors that are developed annually by NHDOT as part of their normal practice (NHDOT, 2016d). Appendix B includes the tables showing the various seasonal, annual and axle correction factors applied to the raw traffic counts in this report.

Seasonal Factors

In this study area, there are Interstate roadways (I-93) as well as state highways and local streets in an urbanized area, so the Group 3 and 4 seasonal factors in Appendix B were applied here. Since counts were taken on specific dates in May, the 2015 seasonal adjustment factors were applied to each count separately based on the date of the count and the type of roadway.

Annual Growth Factors

Annual growth factors are also applied because of the different years that the counts were taken. There is an NHDOT permanent traffic recorder in the immediate study area on I93 just south of Exit 4 at the Derry/Windham town line, but it may not be indicative of growth on the local street network because the interstate is more prone to fluctuations in regional traffic. A comparison of May 2015 to May 2016 traffic counts on I-93 indicates a 1.1% growth rate on the Interstate system. It should be noted that this counter is located north of the current construction area, so it should not have been influenced by drivers trying to avoid construction-related delays. This 1.1% annual growth rate was applied to the 2016 mainline I-93 traffic data only to adjust the data downward to the 2015 base year AWDT.

Another permanent recorder is located on NH Route 28 in Windham south of the study area that should be more representative of the urbanized roadways within the Derry/Londonderry area. A comparison of May 2015 to May 2016 traffic counts at the NH Route 28 location indicates a 2.5% growth rate, which was then applied to the rest of the study area roadway system to derive the 2015 AWDT.

There are also ramp volume counts at Exits 4 and 5 that need to be seasonally adjusted. In discussions with the NHDOT Bureau of Traffic (NHDOT, 2016e), it was agreed that these ramp volumes would exhibit characteristics more in line with the local street network as opposed to seasonal variations in Interstate traffic. As such, the 2.5% growth rate was also applied to the ramp volumes to derive the 2015 AWDT.

Axle Correction Factors

Axle correction factors are also applied to adjust for differences in vehicle classification on various types of roadways to derive a total number of actual vehicles. It is essentially a correction for the assumed number of two-axle vehicles gathered by the field-counting apparatus (such as road tubes) to account for multi-axle vehicles in the traffic stream, based on the FHWA 13-tiered classification system. These factors are developed by NHDOT based on vehicle classification information collected on the various functional classifications of roadways in the state.

Each of the major roadways in the study area has already been functionally classified based on its overall role in the regional roadway network. Since this is an urbanized area, the classifications that are applied here are urban interstate (FC 11), urban principle arterials (FC 14), urban minor arterials (FC 16), collector roadways (FC 17), and local streets (FC 19). The 2015 axle correction factors table is also provided in Appendix B.

Development of 2015 AAWDT Base Volumes

Table 1 shows a summary of the adjusted 2015 AAWDT volumes derived from applying the various adjustment factors to the 2015 and 2016 raw traffic counts. In some cases, such as for the 2014 counts, the NHDOT has already developed the AAWDT for locations of interest in the study area, which only need to be annually adjusted upward to 2015. This adjustment factor has also been applied to the AM and PM peak hour volumes and ' k ' factors (the percentage of AAWDT during each peak hour for each movement) calculated for comparison to the intersection TMCs for future analysis purposes.

TABLE 1

ATR Count Summary - Adjusted 2015 AAWDT and Peak Hour Volumes

Note - Exit 5 SB off-ramp AM peak volume does not include one count that appears anomalous when compared to other counts in same hour Red counts are from NHDOT Town summary data - 2014-2015

3.2 Existing Signal Information - Timing and Phasing

Information about the current signal timing and phasing plans at each of the signalized intersections was compiled from records available from the entity with current maintenance responsibility, which is either the NHDOT Bureau of Traffic or the Town of Derry (none of the signals in Londonderry are under their jurisdiction). Current records for one of the locations (NH Route 102/Fordway) were not readily available, so the required information was gathered in the field by observation. This information, combined with the current lane use at each location, was compiled into a data file in the SYNCHRO signal analysis program, which emulates the procedures in Volume 3 (Interrupted Flow) of the Highway Capacity Manual 2000 (HCM) (TRB, 2000) analysis procedures, for use in future analysis. The HCM 2000 procedures are being used for signalized intersections because these procedures can analyze non-standard timing and phasing parameters, since as leading pedestrian start times, which were found in the field, and to be consistent with the analyses in the Interstate Justification Report (Louis Berger, 2018).

3.3 Crash Data - 2010-2014 - Data Reduction and Summary

Data compiled by the NH Department of Safety for the last five full calendar years was made available by the NHDOT for the two study area towns. Since the crash records are identified by State Plane coordinates, this data search was narrowed further to include only those crashes located within the limits of the study area, roughly bounded by I-93 to the west, NH Route 102 to the south, NH Routes 28 and 28 Bypass north of Tsienneto Road to the north, and the Tsienneto Road/NH Route 102 intersection to the east. The records were assigned to specific roadway segments or individual intersections if sufficient locational information was available. In some cases these identifiers overlapped, so the sum of the segment and intersection crashes is more than the total.

The findings are summarized in Table 2 below. A total of 716 crashes were identified within the project area within the five-year time span, with only one fatality (a single-car incident in 2014 on NH Route 102 in Londonderry). About 24% of the crashes were injury or fatality, with almost 87% of these being on the major roadways in the study area. NH Routes 102 and 28 combined accounted for about $2 / 3$ of the total reported crashes, averaging 48 per year, with the Interstate only accounting for 19%, or 25 per year. The traffic circle at NH Route 28 Bypass and NH Route 102 had the most reported crashes of any intersection during this period, averaging almost 5 per year.

Although there was a consistent number of crashes during three of the five years that data was compiled (between 182 and 185 per year), the other two years show wide fluctuations within this period (115 and 52 crashes). Almost 80% of the crashes involved another motor vehicle, with another 13% involving a crash with a fixed object. Seven of the crashes involved a bicyclist or pedestrian, while another six involved a crash with an animal.

TABLE 2
EXIT 4A STUDY AREA CRASH SUMMARY 2010-2014

Location	Fatal Crashes	Injury Crashes	Property Damage Only	Unknown Damage	Total Crashes
Roadways					
NH Route 102, Exit 4 to Tsienneto Road.	1	58	172	9	240
NH Route 28, Exit 5 to NH Route 102	0	40	162	9	211
I-93, Exit 4 to Exit 5	0	27	97	3	127
NH Route 28 Bypass, NH Route 102 to Auburn Town Line	0	19	39	0	58
Folsom Road/Tsienneto Road	0	3	27	2	32
TOTAL	1	147	497	23	668
\% OF TOTAL	0.1\%	22.0\%	74.4\%	3.4\%	100.0\%
AVG PER YEAR	0.2	29.4	99.4	4.6	133.6
Major Intersections					
NH Route 102/NH Route 28 Bypass	0	7	16	0	23
NH Route 28 Bypass/Tsienneto Road	0	3	14	0	17
NH Route 102/NH Route 28	0	3	14	0	17
NH Route 102/Fordway/High St.	0	3	12	0	15
Tsienneto Road/Pinkerton Street	0	1	10	0	11
Folsom Road/Franklin Street	0	1	8	1	10
NH Route 28/Folsom Road/Tsienneto Road/ (Ross' Corner)	0	1	9	0	10
NH Route 28/Ashleigh Dr.	0	3	6	1	10
NH Route 28/Linlew Dr.	0	0	9	0	9
NH Route 102/Londonderry Road	0	2	5	1	8
NH Route 102/Tsienneto Road	0	1	4	0	5
TOTAL	0	25	107	3	135
\% OF TOTAL	0.0\%	18.5\%	79.3\%	2.2\%	100.0\%
AVG PER YEAR	0	5	21.4	0.6	27
ADDITIONAL INFO BELOW					
Year					
2010	0	45	132	5	182
2011	0	32	83	0	115
2012	0	45	135	5	185
2013	0	8	40	4	52
2014	1	39	133	9	182
	1	169	523	23	716
	23.7\%	(approx. percent that are injury or fatality)			
Crash Types	Number	\% Total			
Animal	6	0.84\%			
Bicyclist	2	0.28\%			
Fixed Object	91	12.71\%			
Jackknife	1	0.14\%			
Other Motor Vehicle	568	79.33\%			
Other Object	3	0.42\%			
Overturn	14	1.96\%			
Parked Motor Vehicle	9	1.26\%			
Pedestrian	5	0.70\%			
Spill (two-wheeled vehicles)	3	0.42\%			
Other	14	1.96\%			
	716				

4.0 Development of Base Traffic Networks

The time periods to be analyzed will be the 2015 AM and PM peak hours as determined by the traffic counts. The analysis will focus on operations of both the Interstate system (freeway facilities, ramp terminals, ramp merge/diverge, weaving sections) as well as local intersection Levels of Service, using the methodologies in the current version of the HCM.

There are two different approaches that need to be considered for the Interstate system versus the local roadways. The Interstate section within the study area from south of Exit 4 to north of Exit 5 is a closed system - traffic enters and exits at specific locations, so the entire system needs to balance in both directions. The local roadways are not a closed system; counts between the local intersections may not necessarily balance in most locations because there are other intervening driveways for adjacent land uses and other minor streets where traffic is able to enter or exit the network.

Interstate Volume Balancing

Within the closed Interstate system, there are two adjustments that need to be made. One is for the overall mainline/ramp system, where a starting point was chosen (in this case, at the NHDOT permanent traffic recorder location south of Exit 4) and add or subtract the on- and off-ramp volumes both northbound and southbound to develop the base AM and PM peak hour networks along I-93.

The second adjustment is to balance volumes between the ramp terminals at both Exits 4 and 5, based on the peak hour volume counts and the recent TMCs that were collected in May 2016. This second process will be discussed later in the report.

Directional counts from the I-93 permanent recorder station during May 2015 were reviewed and compiled to determine the AWDT during that period (taking the Memorial Day holiday count out of consideration). These were adjusted seasonally to develop the 2015 AWDT for both northbound and southbound traffic as the starting point. The ramp counts taken in May 2016 were also seasonally and annually adjusted to the 2015 AWDT and then added and subtracted accordingly going north and south on the Interstate. The resulting mainline 2015 AWDT volumes for the AM and PM peak hours are shown in Figures 4 and 5, respectively. The counts and calculations are provided in Appendix C.

Ramp Terminal Balancing - Exits 4 and 5

The turning movement volumes at the ramp terminals at Exits 4 and 5 must also balance between the intersections while agreeing with the overall ramp volumes. While the ramp volumes were collected with automatic traffic recorders, which only summarized data on an hourly basis, the turning movements were collected at 15 -minute intervals. Furthermore, the individual intersections also have their own peak hours, which may not necessarily match the adjacent ramp or the hourly ramp volume. Therefore, an overall peak for each interchange was developed from a summary of the turning movement
counts at each location and the turning percentages applied to the balanced interstate ramp volumes derived above. The AM peak period was determined to be from 7:30-8:30, while the PM peak was from 4:45-5:45. The balanced 2015 AM and PM peak hour volumes at the two interchanges are also shown in Figures 4 and 5, respectively. The calculations are also provided in Appendix C.

Other Intersection Counts

As noted above, the local intersection turning movement counts were collected in groups of intersections in close proximity to each other to minimize significant differences between locations, even if there were intervening roadways or driveways that would not allow balancing between sites. There are only four intersections on the local network where traffic should essentially balance between adjacent intersections:

- Between Ross' Corner (NH Route 28/Folsom/Tsienneto) and at Pinkerton Street;
- Between North High Street/Madden Road and the North High Street/Folsom/ Franklin/Franklin Street Extension intersection;
- Between the NH Route 28 Bypass/NH Route 102 traffic circle and the intersection at NH Route 28 Bypass/Pinkerton Street/Perkins Street to the north; and
- Between NH Route 102/Tsienneto Road easterly to include the North Shore Road and English Range Road intersections.

Counts at these locations were balanced and all counts were adjusted to the 2015 AWDT using the NHDOT seasonal and annual factors for Group 4 Urban Highways noted above. The 2015 AM and PM peak hour volumes at the local intersections are shown in Figures 6 and 7, respectively.

5.0 Model Calibration

The SNHPC regional traffic model is an Average Annual Weekday Traffic (AAWDT) model for the greater Manchester, NH area that includes Derry and Londonderry as well as other surrounding towns. The model area has expanded since its use in the 2007 DEIS project to include towns to the south, east and west of the Exit 4A area with added roadway links and TAZs to provide traffic generation capabilities for the SNHPC's planning horizon of 2040.

However, to be a useful travel forecasting tool, the model needs to be able to replicate actual traffic volumes throughout its network within certain reasonable margins of error established by the Federal Highway Administration (FHWA) for regional traffic models. As such, the various 2015 traffic volume counts provided in Table 1 for the Exit 4A study area, among other locations in the SNHPC region, were used as a guide to test the validity of the SNHPC traffic model as a predictive tool of actual 2015 counts found in the region. This was found to be the case, and the findings of the calibration process were presented to the Exi4 4A Working Group in October, 2016. A more detailed memo describing the various calibration procedures undertaken as part of this project is included in Appendix D.

It should be noted that the current SNHPC traffic model is based on expected trip making behavior from observations of past conditions and predicting these out to a future date, in this case the 2040 design year. With the advent of autonomous/connected vehicles (AV/CVs) and the increasing likelihood of them being a larger share of the vehicle fleet within the planning horizon now covered by the model, there is much uncertainty about how and to what extent current and forecasted individual driving habits may be affected by this potentially transformative technology.

A recent study prepared by the Texas A\&M Transportation Institute (Texas A\&M, 2017) looked at the possible implications of AV/CVs on the transportation planning process. Some of the key modeling components they identified that could be affected by the eventual deployment of AV/CVs into the traffic stream include:

- the possible changes on the socio-economic factors that typically influence trip making and vehicle ownership;
- future characteristics of the highway network, including the effect on roadway and intersection capacity, safety and operations;
- the need to consider changes to the model area geography (e.g. traffic zones) based on possible household locational decisions;
- the possible effects on trip generation, distribution and mode choices with the availability of AV/CVs, including the likelihood of zero-occupant vehicles on the roadway network

The current transportation planning process looks at changes to demographics and roadway networks to predict future travel demands, assuming trip making will be similar to today. With AV/CVs becoming a larger component of future transportation options, the current process is not suited to predict future trip-making behavior since there is no way to reasonably predict the impact of these technologies on individual travel demand decisions. There is also the likelihood that populations that now are unable to drive or own a vehicle will have greater mobility options available to them, and therefore may result in more trips on the network than would normally be forecasted.

Therefore, until such time as traffic demand modelling on a regional basis can account for the increased deployment of AV/CVs at some critical mass to be able to better assess the impact on some/all of the trip-making factors noted above, the current transportation planning and regional travel demand modeling process is the best available option for forecasting future traffic on the roadway network for a project such as Exit 4A.

6.0 Capacity Analyses - 2015 Base Conditions

In general, traffic analyses focus on the facilities that present the most likely constraints to overall operations on the roadway network. For interstate facilities, traffic operations are governed largely by the combination of mainline traffic flow at a given speed and number of lanes as it may be influenced by merging and diverging traffic at on and offramps at interchanges, as well as any weaving sections between ramps in close proximity to each other. For local roadway networks, traffic flow tends to be governed by
intersection capacity which acts to meter volumes onto adjacent roadway segments based on its ability to allow conflicting movemetns to be served.

The 2010 Highway Capacity Manual (TRB, 2010) provide the technical procedures to analyze traffic operations of freeway facilities (basic freeways, ramp merge/diverge and weaving sections) used in this report. Chapter 10 of the 2010 HCM defines the methodologies used to analyze typical freeway facility operations for extended lengths of continuously connected basic freeway, weaving, merge and diverge segments, such as those along I-93 in the Exit 4A study area. This methodology allows for the analysis of multiple/continuous 15 -minute time periods and is capable of identifying locations where the facility may break down and the impacts of such on the rest of the facility. As such, the analysis determines where the 'weakest link' in the facility may control overall operations along a freeway network in either direction.

The 2000 Highway Capacity Manual (TRB, 2000) provided methodologies for signalized and unsignalized intersections, including roundabouts, that will be used to analyze the NH Route 102/NH Route Bypass 28 traffic circle. Because of the phasing and timing limitations of the existing intersections, the HCM 2000 procedures were used for the signalized and unsignalied intersection analyses, as well as to be consistent with the IJR. Chapters 18 and 19 of the 2000 HCM define the methodologies for signalized and twoway stop controlled intersections.

The Highway Capacity Software (McTrans, 2018) as well as the SYNCHRO/Sim-Traffic programs (Trafficware, 2016) are common software packages used by traffic engineers to evaluate how traffic volumes react under interrupted and uninterrupted flow conditions under various volume, speed, traffic composition, lane use and signal timing conditions. The Level of Service (LOS) criteria for freeway facilities and intersection operations defined in the both versions of the HCM are provided in Appendix E. In general, a LOS C is considered desirable for freeway facilities operations; however, LOS D is considered acceptable for both freeways and intersection operations in urbanized areas.

6.1 Mainline Interstate Operations

The 2015 base weekday AM and PM peak hour volumes along I-93 from just south of Exit 4 to north of Exit 5 are shown in Figures 4 and 5.

The existing two-lane I-93 freeway facility was segmented along its length both northbound and southbound, based on the spacing of on- and off-ramps connecting the basic two-lane freeway segments on either side. Northbound, there were five basic freeway segments, two diverge (i.e., off-ramp) and two merge (i.e. on-ramp) segments under existing conditions. Southbound, there is one additional freeway and one more merge segment to account for the SB loop on-ramp at Exit 4 from the east and the segment between the SB on-ramps. Because of the distance between the existing interchanges, there are currently no weaving sections along I-93 in the Exit 4A study area network.

6.1. 1 Mainline Freeway Segments

Five freeway segments are contained in the I-93 project study area going northbound, with a sixth one added in the southbound direction because of the additional on-ramp at Exit 4. There will be additional segments created when the Exit 4A alternatives are analyzed.

The demand and geometric factors input for segments and facility analyses include:
Demand

- Vehicles/hour
- Percent trucks and recreatonal vehicles (RVs)
- Driver population factor

Geometry

- Number of lanes
- Average lane width
- Right-side lateral clearance
- Terrain
- Free-flow speed
- Location of/distance to merge/diverge segments, with number of lanes, length of acceleration/deceleration lanes

A description of the existing facility segments and the detailed reports are summarized in Table 3 and included in Appendix F.

TABLE 3
HCS 2010 - FREEWAY FACILITIES ANALYSIS - 2015 BASE- AM AND PM PEAK HOURS

Note: $\mathrm{d} / \mathrm{c}=$ Demand-to-capacity ratio

6.1.2 Merge/Diverge Operations

Merge/diverge operations are the result of off-ramp and on-ramp traffic leaving and/or getting onto the freeway and how the ramp traffic interacts with the mainline freeway traffic. Since all traffic on I-93 in the study area is entering or exiting in the rightmost lane, which is also where most heavy vehicles travel, this Lane 1 volume is critical to the determination of operations. The ramp spacing and order of operation (e.g. off-ramp followed by an on-ramp, as opposed to an off-ramp followed by another off-ramp) also plays a role in how and to what degree these movements impede mainline freeway traffic flow.

There are currently four merge (on-ramp) and diverge (off-ramp) arrangements in the Exit 4A study area in the northbound direction and a fifth in the southbound direction (the second SB on-ramp at Exit 4). The introduction of a new interchange between Exits 4 and 5 will add another merge and diverge in each direction. The differences between the northerly and southerly interchange alternatives and their relative proximity to Exits 4 and 5 will ultimately determine how these new ramps will affect mainline operations. Table 3 provides the analysis results for the merge/diverge operations along I-93 in the study area under 2015 AM and PM peak hour conditions.

6.1.3 Weaving Operations

Weaving operations occur on highway segments between on- and off-ramps where merging and diverging traffic conflict while completing their respective movements. This analysis is mostly governed by the distance between these ramps, the number of lanes available to make such a movement, the volumes making their respective merge and/or diverge movements, and the ability of these movements to occur independently without influencing each other. This is more of an issue in areas where there are closely spaced interchange ramps.

In the current condition, Exits 4 and 5 are more than two miles apart, so there is essentially no weaving that occurs between the ramps. With the introduction of Exit 4A to the I-93 network, weaving between the Exit 4 NB on-ramp and the Exit 4A NB off-ramp may need to be considered for the southerly interchange alternatives. However, the HCS Freeway Facilities calculations allow for an overlap of the 1500foot 'influence areas' between adjacent ramps, which was included in the analyses. At this point, it does not appear that a weaving section will be created between Exit 4A and Exit 5 because of the greater spacing between them.

7.0 Signalized Intersection Operations - 2015 Base Condition

The existing signal timing/phasing information gathered earlier, combined with the current lane use at each location along with the 2015 AM and PM peak hour volumes, was compiled into a data file in the SYNCHRO (Trafficware, 2016) signal analysis program, which emulates the procedures in Volume 3 (Interrupted Flow) of the Highway Capacity Manual 2000 (HCM) analysis procedures (TRB, 2000). Because of the phasing and timing limitations of the existing intersections, the HCM 2000 procedures were used for the signalized intersection analyses. The overall delay and LOS was determined by using the HCM module in SYNCHRO, while the queuing calculation results came directly from five runs of the Sim-Traffic module within SYNCHRO per NHDOT guidance (NHDOT, 2017a). The volume-to-capacity (v/c) ratios, average delays and LOS for the signalized intersections are shown in Table 4 below. The peak queues by approach are shown in Table 5 later in this report.

| Table 4 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Summary of 2015 Signalized Intersection Capacity Analyses | | | | | | |

The HCM and SYNCHRO printouts are provided in Appendices G 1-3.
The results of these analyses show which movements at the various intersections exhibit some current capacity constraints (LOS E or worse). Some of these, such as at the Exit 4 ramp terminals, will be addressed by the ongoing I-93 widening project, while issues at other local intersections may need to be addressed in some form, either through added lanes and/or optimized signal timings, by the 2040 design year. These existing deficiencies are discussed briefly below:

- Exit 4 SB Off-Ramp

The turns from the off-ramp are the most constrained movements, with the higher-volume right turn from a single lane showing the most delay and queuing. A second right-turn lane is proposed as part of the ongoing improvements to Exit 4.

- Exit 4 NB Ramps

The westbound thru traffic is under duress during the AM peak, while the eastbound left turn to the on-ramp is at LOS E in the PM peak. While the right turn from the off-ramp operates at a good LOS because it is not controlled by the signal, field observations show it is often impeded by either the eastbound traffic through the intersection and/or the downstream queuing of traffic on NH Route 102 east of the interchange.

- NH Route 102/NH Route 28 (Crystal Avenue/Broadway/Birch Street)

This major crossroads in the heart of downtown Derry has several movements that exhibit substantial delays during AM and/or PM peak hours, and results in queuing along Broadway. The level of parking and pedestrian activity also affects overall traffic operations as the mix of local and through traffic results in significant congestion, even if not directly reflected in the overall capacity/LOS calculations.

Because the reduction in this through traffic in downtown Derry is one of the primary purposes for the proposed Exit 4 A project, it was necessary to find a more qualitative assessment of downtown congestion that may not be reflected in the capacity calculations. To do this, we looked at Google Maps snapshots during the course of typical weekday AM and PM peak hours (Google, 2018). These are based on real-time on-the-ground observations of travel times in the study area. The snapshots for AM and PM peak hours between Monday, January 22, 2018 and Friday, January 26, 2018 are provided in Appendix H. It should be noted that Exit 4 is currently under construction, although there should be minimal work going on during the winter when these snapshots were taken.
These figures show regular congestion at the NH Route 102/28 intersection as well as other key intersections in the study area during any given weekday peak
hour. Congestion in and around Exit 4 is oriented westbound in the AM peak and eastbound in the PM peak, and is shown to affect other segments along Broadway in both directions to varying degrees. Key intersections along the north-south corridors of NH Route 28 and NH Route 28 Bypass, such as at Ross' Corner, Tsienneto Road, and the traffic circle at NH Route 102, appear to exhibit regular levels of delay and congestion based on this sample of peak hour travel times.

- Ross' Corner (NH Route 28/Tsienneto Road/Folsom Road)

This intersection leads to the major commercial corridor in north Derry as well as serving as a commuter route. Traffic currently uses the Ash Street Extension and Folsom Road as an alternative route to NH Route 102 to avoid the aforementioned downtown congestion. Several turning movements experience significant delays, even with recent improvements that provided a second SB leftturn lane onto Tsienneto Road. The proximity of the Pinkerton Street unsignalized intersection just east of this location also affects overall traffic flow in this area.

- NH Route28/Ashleigh Drive

This intersection serves as the primary access drive to the new Wal-Mart supercenter as well as other commercial establishments on the east side of NH Route 28. The heavy turning movements into and out of this town road, combined with significant commuter volumes along the NH Route 28 corridor, result in less than desirable levels of delay for several movements, particularly in the PM peak, even though the overall LOS is at LOS C.

- NH Route 28 Bypass/Tsienneto Road

The Tsienneto Road corridor west of NH Route 28 Bypass as well as the lands adjacent to this intersection has seen a fair share of new development over the years, as well as increased use by east-west commuter traffic avoiding NH Route 102 and the downtown area. With only a single east-west lane through the intersection, calculated delays now exceed acceptable LOS thresholds for some movements during both peaks.

8.0 Unsignalized Intersection Operations

Similarly, the unsignalized intersections in the study area network were analyzed for the 2015 AM and PM peak hours using the standard 2010 HCM procedures. These results are provided in Table 6, with the printouts in Appendix I. It should be noted that the traffic circle at the intersection of NH Route 28 Bypass, NH Route 102, and East Derry Road was analyzed as a roundabout, since all turns at this location are right turns in the counterclockwise direction. The circle was evaluated using updated roundabout analysis procedures from HCM 6, published in 2016 (TRB, 2016), because it incorporates updated data from actual field operations of the growing number of roundabouts in the USA and, as such, should be more representative of local driver behavior.

As observed in the field and confirmed by the SYNCHRO analyses, left turns from the minor side streets experience significant delays due to the high volumes on the major streets, either on the State highway system or local streets such as Tsienneto Road. Of particular concern is the heavy left-turn volume exiting from Pinkerton Street onto Tsienneto Road in close proximity to the signalized intersection at Ross’ Corner. Special attention will be needed to address this condition under future No-Build and Build conditions.

The table also shows the peak design queue by approach for both the signalized and unsignalized intersections, based on the 2015 capacity analysis of base conditions. This will be an important component of evaluating the future 2040 Build condition layouts under the various alternatives.

Table 5 2015 Signalized Intersection Capacity and Queuing Analys Signalized Intersections									
Intersection	Lane Groups	95% queue (ft)	AM v/c ratio	ak Hour Average Delay	LOS	95\% queue (ft)	$\begin{gathered} \mathrm{PM} \\ \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	ak Hour Average Delay	LOS
\#1 - Exit 4 SB Off-Ramp/NH Route 102	EB Thru	212	0.46	11.5	B	230	0.44	11.0	B
	WB Thru	18	0.31	1.9	A	18	0.41	1.8	A
	SB LT	251	0.64	39.5	D	317	0.69	50.4	D
	SB RT	176	0.75	13.6	B	630	1.08	80.9	F
\#2 - Exit 4 NB Off-Ramp/NH Route 102	NB LT	107	0.57	46.2	D	281	0.50	33.3	C
	NB RT	0	0.15	0.2	A	0	0.41	0.8	A
	EB LT	610	0.88	43.8	D	548	0.91	62.3	E
	EB Thru	83	0.24	4.3	A	242	0.40	19.5	B
	WB Thru	448	0.97	58.7	E	250	0.76	51.5	D
\#3 - Exit 5 SB Off-Ramp/NH Route 28	EB Thru	212	0.68	32.7	C	197	0.56	27.8	C
	EB RT	0	0.21	0.3	A	0	0.21	0.3	A
	WB LT	211	0.81	40.0	D	151	0.62	45.3	D
	WB Thru	59	0.43	7.0	A	52	0.28	4.8	A
	SB LT	138	0.68	29.2	C	254	0.73	36.5	D
	SB RT	148	0.78	28.7	C	63	0.45	6.2	A
\#4 - Exit 5 NB Off-Ramp/NH Route 28	EB LT	251	0.86	55.0	D	223	0.72	48.4	D
	EB Thru	5	0.44	2.2	A	308	0.53	12.7	B
	WB Thru	189	0.56	26.1	C	192	0.37	27.4	C
	WB RT	0	0.53	1.3	A	0	0.38	0.7	A
	NB LT	233	0.87	49.4	D	180	0.75	44.1	D
	NB RT	0	0.10	0.1	A	143	0.77	35.2	D
\#6 - NH Route 102/Fordway	EB all	247	0.12	17.7	B	591	1.00	47.1	D
	WB all	368	0.94	26.4	C	306	0.81	26.8	C
	NB all	304	0.72	51.7	D	215	0.84	36.6	D
	SB all	22	0.86	12.4	B	90	0.18	15.9	B
\#7 - NH Routes 102/28	EB L	148	0.83	83.0	F	155	0.70	55.8	E
	EB T/R	170	0.42	20.1	C	393	0.73	34.2	C
	WB L	47	0.28	40.6	D	119	0.68	69.5	E
	WB T/R	385	0.88	42.7	D	272	0.67	35.1	D
	NB L	101	0.79	90.6	F	80	0.43	42.5	D
	NB T/R	274	0.85	48.3	D	316	0.86	51.3	D
	SB L	121	0.86	103.4	F	174	0.79	67.9	E
	SB Thru	188	0.61	33.9	C	346	0.77	43.3	D
	SB RT	2	0.23	1.1	A	35	0.21	3.5	A

Intersection	Existing Lane Use	Table 5 (Cont'd) alized Intersections (cont.)							
		95% queue (ft)	AM v/c ratio	ak Hour Average Delay	LOS	95\% queue (ft)	PM v/c ratio	ak Hour Average Delay	LOS
\#11- Ross' Corner (Folsom/NH Route 28)	EB L	191	0.16	88.0	F	324	0.89	78.7	E
	EB Thru	169	0.27	45.1	D	310	0.73	49.0	D
	EB R	0	0.25	0.0	A	0	0.17	0.7	A
	WB L	157	0.70	66.1	E	273	1.14	165.5	F
	WB Thru	323	0.21	80.3	F	241	0.75	60.7	E
	WB R	108	0.26	8.0	A	190	0.52	16.4	B
	NB L	35	0.90	40.5	D	134	0.58	66.6	E
	NB Thru	90	0.63	25.5	C	198	0.43	40.0	D
	NB R	0	0.01	1.2	A	0	0.27	1.1	A
	SB L	131	0.74	42.0	D	248	0.76	49.7	D
	SB Thru	72	0.95	19.5	B	419	0.64	35.6	D
	SB RT	27	0.48	4.1	A	51	0.28	4.8	A
\#13 -NH Route 28/Linlew Drive	EB L/T	10	0.06	33.0	C	40	0.18	39.4	D
	EB R	0	0.04	0.2	A	0	0.05	0.3	A
	WB L/T	61	0.35	40.6	D	69	0.46	48.8	D
	WB R	93	0.71	18.9	B	43	0.66	13.0	B
	NB L	0	0.00	0.0	A	36	0.19	46.3	D
	NB T/R	675	0.35	12.9	B	296	0.50	15.5	B
	SB L	63	0.35	42.8	D	125	0.64	37.4	D
	SB T/R	134	0.38	4.9	A	437	0.57	14.3	B
\#14 - NH Route 28/Ashleigh Drive	EB L	20	0.12	40.8	D	60	0.54	65.2	E
	EB T/R	16	0.11	30.0	C	29	0.25	34.5	C
	WBL	110	0.52	46.5	D	232	0.84	69.2	E
	WB L/T	111	0.53	46.7	D	227	0.83	67.0	E
	WB R	38	0.22	6.0	A	63	0.29	10.9	B
	NB L	56	0.05	61.6	D	3	0.06	65.0	E
	NB T/R	183	0.50	10.1	B	311	0.69	14.8	B
	SB L	8	0.41	42.9	E	39	0.47	47.4	D
	SB T/R	285	0.35	10.3	B	234	0.60	14.0	B
\#18 - NH Route 28 Bypass/ Tsienneto Road	EB L	126	0.88	77.5	E	278	0.86	54.0	D
	EB T/R	114	0.49	24.2	C	394	0.69	30.0	C
	WB L	82	0.50	41.9	D	36	0.15	35.1	D
	WB T/R	309	0.95	59.4	E	248	0.86	58.0	E
	NB L	119	0.70	57.5	E	97	0.53	44.2	D
	NB T/R	193	0.48	26.8	C	307	0.69	37.0	D
	SB L	36	0.18	35.8	D	80	0.44	42.4	D
	SB Thru	171	0.63	35.7	D	149	0.39	29.4	C
	SB R	71	0.41	7.9	A	30	0.20	2.3	A

Table 6 2015 Unsignalized Intersection Capacity and Queuing Analyses									
Intersection	isting Lane Use	95\% queue (ft)	AM v/c ratio	k Hour Average Delay	LOS	95\% queue (ft)	PM v/c ratio	k Hour Average Delay	LOS
\#5-NH Route 102/Londonderry Road	EB L WB L NB all SB L/T SB R	$\begin{array}{r} 13 \\ 0 \\ 0 \\ 20 \\ 65 \end{array}$	$\begin{aligned} & 0.142 \\ & 0.005 \\ & 0.008 \\ & 0.253 \\ & 0.505 \end{aligned}$	$\begin{array}{r} 12.3 \\ 8.6 \\ 11.9 \\ 115.0 \\ 36.1 \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{E} \end{aligned}$	$\begin{array}{r} 40 \\ 0 \\ 65 \\ 68 \\ 45 \end{array}$	$\begin{aligned} & 0.354 \\ & 0.008 \\ & 1.078 \\ & 1.130 \\ & 0.395 \end{aligned}$	$\begin{array}{r} 11.7 \\ 10.7 \\ * \\ * \\ 19.9 \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{C} \end{aligned}$
\#8 - North High Street/Ash Street Extension	$\begin{gathered} \text { EB all } \\ \text { NB LT } \end{gathered}$	$\begin{array}{r} 45 \\ 0 \end{array}$	$\begin{aligned} & 0.383 \\ & 0.005 \end{aligned}$	15.4 8.2	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 445 \\ 0 \end{array}$	$\begin{aligned} & 1.152 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 123.5 \\ 8.4 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~A} \end{aligned}$
\#9 - North High Street/Madden Road	$\begin{gathered} \text { EB all } \\ \text { NB LT } \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.079 \\ & 0.000 \end{aligned}$	$\begin{array}{r} 18.7 \\ 0.0 \end{array}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 10 \\ 0 \end{array}$	$\begin{aligned} & 0.11 \\ & 0.00 \end{aligned}$	$\begin{array}{r} \hline 27.2 \\ 0.0 \end{array}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
\#10 - North High/Folsom/Franklin Streets	EB all WB all NB all SB all	$\begin{array}{r} 3 \\ 3 \\ 15 \\ 8 \end{array}$	$\begin{aligned} & 0.035 \\ & 0.025 \\ & 0.160 \\ & 0.096 \end{aligned}$	$\begin{array}{r} 8.3 \\ 8.0 \\ 14.2 \\ 10.5 \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 30 \\ 50 \end{array}$	$\begin{aligned} & 0.043 \\ & 0.038 \\ & 0.293 \\ & 0.424 \end{aligned}$	$\begin{array}{r} 8.4 \\ 9.2 \\ 23.7 \\ 22.5 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
\#12-Tsienneto Road/Pinkerton Street	$\begin{gathered} \text { WB L } \\ \text { WB L/T } \\ \text { NB L } \\ \text { NB R } \end{gathered}$	$\begin{array}{r} 8 \\ 0 \\ 309 \\ 13 \end{array}$	$\begin{aligned} & \hline 0.088 \\ & 0.000 \\ & 1.156 \\ & 0.154 \end{aligned}$	$\begin{array}{r} \hline 8.5 \\ 0.0 \\ 154.3 \\ 11.8 \end{array}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~F} \\ \mathrm{~B} \end{gathered}$	$\begin{array}{r} 13 \\ 0 \\ 340 \\ 28 \end{array}$	$\begin{aligned} & \hline 0.138 \\ & 0.000 \\ & 1.424 \\ & 0.279 \end{aligned}$	$\begin{array}{r} 9.3 \\ 0.7 \\ 282.3 \\ 15.0 \end{array}$	$\begin{gathered} \hline \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~F} \\ \mathrm{C} \end{gathered}$
\#15-NH Route 28/Scobie Pond Road	$\begin{gathered} \text { EB L } \\ \text { SB all } \end{gathered}$	$\begin{array}{r} 3 \\ 183 \end{array}$	$\begin{aligned} & 0.022 \\ & 1.011 \end{aligned}$	$\begin{array}{r} 9.5 \\ 143.2 \end{array}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~F} \end{gathered}$	$\begin{array}{r} 5 \\ 318 \end{array}$	$\begin{aligned} & 0.061 \\ & 2.116 \end{aligned}$	$\begin{array}{r} 10.3 \\ * \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$
\#16 - NH Route 102/NH Route 28 Bypass/East Derry Road (Traffic Circle-RT only)	$\begin{array}{r} \text { EDR WB } \\ 28 \text { Byp NB } \\ 28 \text { Byp SB } \\ 102 \mathrm{~EB} \\ 102 \mathrm{WB} \end{array}$	$\begin{aligned} & 375 \\ & 175 \\ & 400 \\ & 475 \\ & 325 \end{aligned}$	$\begin{aligned} & 1.031 \\ & 0.781 \\ & 1.058 \\ & 1.106 \\ & 1.026 \end{aligned}$	$\begin{aligned} & 77.5 \\ & 29.5 \\ & 83.5 \\ & 96.6 \\ & 86.1 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{D} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 450 \\ & 525 \\ & 750 \\ & 850 \\ & 100 \end{aligned}$	$\begin{aligned} & 1.112 \\ & 1.268 \\ & 1.250 \\ & 1.456 \\ & 0.622 \end{aligned}$	$\begin{array}{r} 103.3 \\ 169.4 \\ 146.4 \\ 240.0 \\ 24.6 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{D} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{C} \end{aligned}$
\#17 - NH Route 28Bypass/ Pinkerton/Nesmith	EB L/T EB R WB all NB all SB all	$\begin{array}{r} 125 \\ 40 \\ 245 \\ 30 \\ 0 \end{array}$	$\begin{aligned} & \hline 3.388 \\ & 0.350 \\ & 1.371 \\ & 0.289 \\ & 0.014 \end{aligned}$	$\begin{array}{r} \hline * \\ 13.6 \\ 296.3 \\ 9.5 \\ 8.5 \end{array}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 60 \\ 140 \\ 73 \\ 15 \\ 3 \end{array}$	$\begin{aligned} & \hline 0.521 \\ & 0.692 \\ & 0.599 \\ & 0.175 \\ & 0.025 \end{aligned}$	$\begin{array}{r} \hline 69.4 \\ 20.6 \\ 76.5 \\ 8.5 \\ 8.4 \end{array}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{C} \\ & \mathrm{~F} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
\#19-NH Route 102/Tsienneto Road	$\begin{array}{r} \text { EB L } \\ \text { SB L/R } \end{array}$	$\begin{array}{r} 3 \\ 30 \end{array}$	$\begin{aligned} & \hline 0.020 \\ & 0.287 \end{aligned}$	$\begin{array}{r} 9.5 \\ 19.3 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{r} 0 \\ 218 \end{array}$	$\begin{aligned} & \hline 0.016 \\ & 0.869 \end{aligned}$	$\begin{array}{r} 8.4 \\ 60.9 \end{array}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~F} \end{gathered}$

Note- Assumes 25 ft per queued vehicle

* - calculated delay exceeds 300s

9.0 Summary of SNHPC Model Assignments - 2015, 2040

The SNHPC calibration of their regional traffic forecasting model was discussed with the Traffic Working Group (TWG) in October 2016. This calibration process was based on the least-mean squared comparison of the 2015 assignments (based on the various socioeconomic characteristics of each Traffic Analysis Zone (TAZ) used by the model to generate origins and destinations to be assigned to the network) to the calculated 2015 Average Annual Weekday Traffic (AAWDT) on the key links in the study area network that were derived from the extensive traffic counting program initiated at the start of this SDEIS project. This comparison was found to fall within the FHWA's acceptable margin of error for traffic modeling as summarized in Appendix D. As such, it was agreed by the TWG at this meeting that the model was in compliance with FHWA standards for model accuracy and could be used as a tool to reasonably project future volumes for this project.

It was further agreed by the TWG that the relative differences between the model AAWDT assignments for 2015 and 2040 would be applied to the calculated 2015 AAWDT volumes. AM and PM peak hour volumes were to be derived as a percentage of the AAWDT as determined in both the roadway and intersection turning movement count data. AAWDT assignments at individual intersections would be used to develop any adjustments to peak hour existing turning movements, based on both the increase/decrease in traffic volume as well as any changes in turning movement percentages of any particular movement. The derivation of these future intersection volumes was completed only after consensus was reached with the TWG on the reasonableness of the 2040 AAWDT traffic assignments for each alternative.

The future model includes known/programmed roadway improvements in the SNHPC's Regional Transportation Plan - 2015-2040 (SNHPC, 2017) that includes Exit 4A; however, this interchange was not included in any of the No-Build networks. While it was recognized that there may be locations where existing/projected capacity deficiencies may exist, only those projects either programmed in the State's Ten-Year Highway Plan (NHDOT, 2018) or the Regional Transportation Plan were included in the 2040 No-Build network.

The 2040 SNHPC model assignments were developed by including the population and employment projections for each community in the SNHPC model area, as outlined in the Lane Use Scenarios report (Louis Berger, 2017) and disaggregated to the TAZ level. This report also included alternative development scenarios without and with the proposed Exit 4A interchange, notably for the Woodmont Commons development on the east side of I-93, since the development of that parcel would be directly impacted by the location of the proposed interchange. In general, the Woodmont Commons-East development was assumed to reach its build-out potential under only the southerly interchange options (A and B), and would have a lesser development scenario under the 2040 No-Build C, D, and F alternatives.

It should also be noted that the Woodmont Commons traffic impact study for the full development project submitted to the Town of Londonderry (TEC, 2013) assumed that, because of the 'live-work-play' design intent of the proposed mixed-use development, a certain percentage of site-generated trips would remain 'internally captured' within the site itself and would not be assigned to the adjacent street network outside of the development. An adjustment factor of 23% was applied to the total site traffic generation for the various proposed land uses assumed in the Woodmont Commons traffic impact study to account for this estimated internal capture rate.

However, it should be noted that the methodologies used to develop trip generation, distribution and assignments for an individual traffic impact study versus a regional model are quite different. The model applies its trip distribution and assignment algorithms directly to the trip productions and attractions generated by each TAZ, based on their socioeconomic characteristics, which does not differentiate between trips that should or should not be assigned to other TAZs. In addition, the Woodmont Commons development is included as part of several TAZs, so correcting for only some trips from a particular TAZ and not others may appear to be arbitrary and jeopardize the validity of the model.

After consultation with the NHDOT Bureau of Traffic, it was agreed, as the initial step, all the model-generated traffic from all TAZs, including Woodmont Commons, was assigned to the SNHPC model network without regard to the internal capture rate assumptions noted in their site-specific traffic impact study. (NHDOT, 2017b) This should provide a conservatively worst-case estimate of traffic being assigned to the study area roadway network. Should the design intent of Woodmont Commons be realized and less traffic is actually generated as the project evolves, overall operations would be better than projected and the design life of any proposed improvements would be extended.

Individual spreadsheets were created for the key links in the network under each 2040 alternative for purposes of calculating the projected 2040 AAWDT and AM and PM peak hour volumes, based on the relative increase/decrease between 2015 and 2040 model assignments.

9.1 AAWDT Comparisons - 2040

Table 7 presents a summary of the projected 2040 AAWDT on key links in the study area roadway network, including the I-93 mainline and all interchange ramps. As noted above, these were derived by applying the growth rate between SNHPC's 2015 and 2040 model assignments to the calculated 2015 AAWDT derived from the updated traffic counting program created for this project. These assignments also provide projected volumes for newly created road segments, including the Exit 4A on- and off-ramps as well as the connector roadway between the new proposed interchange and the existing roadway network.
TABLE 7

9.1.1 No-Build Conditions

A review of the table indicates that there is a reduction in trips on north-south roadways such as NH Route 28 Bypass, NH Route 28 and Fordway under No-Build conditions. This appears to be as a result of the additional capacity provided by the widening of I-93 to four lanes each way which allows through traffic to use the interstate for these north-south trips as opposed to the local roadways through Derry. Mainline volumes on I-93 increase by between 64-68\% from 2015 and 2040, which is about a 2.5% annual growth rate. Volumes on the Exit 4 ramps increase between 95$125 \%$ from 2015 to 2040, while ramp volumes at Exit 5 only grow between 45-50\% during the same period. This would appear to indicate the influence of the Woodmont Commons development in Londonderry on both sides of the Interstate being accessed from either side of Exit 4, and is also reflected in volume increase on NH Route 102 west of the interchange. Local roads in the Woodmont area, such as Gilcreast Road and Ash Street, also experience marked increases in traffic volumes under 2040 NoBuild conditions.

9.1.2 Alternative A

Mainline volumes on I-93 show slightly higher growth rates under 2040 conditions with Exit 4A -Alternative A in place than in the No-Build condition. This is driven in part by Woodmont Commons because this development is assumed to reach its maximum potential with Alternative A in place, as opposed to either No-Build or most other Exit 4A options.

Exit 4 ramp volumes are affected to differing degrees with Alternative A in place. Growth rates for the NB on-ramp and SB off-ramp are about half what they are under the No-Build case, since this traffic is diverted to Exit 4A. The projected NB off-ramp volume of 17,385 vehicles per day (vpd), shows a 10% reduction over 2040 No-Build volumes. The development of Woodmont Commons to the west is reflected in the 10% increase in SB on-ramp volumes from the west side of the interchange, whereas the SB on-ramp volume from the east shows a 48% reduction in traffic that is now presumably using Exit 4A.

Exit 5 ramp volumes show greater increases on the NB off-ramp and SB on-ramp under Alternative A compared to the No-Build case. This would indicate increased interaction between Exit 4A and 5 to and from the north more than between Exits 4 and 4A, which is consistent with the findings in the previous DEIS for this project. (FHWA, 2007) The Exit 5 SB off-ramp actually shows a 43.5% reduction in traffic compared to No-Build, indicating that this traffic is likely continuing on the mainline down to Exit 4A. The NB on-ramp traffic volume is also about 20% lower than under No-Build conditions, indicating redistribution of some NB trips to Exit 4A and away from NH Route 28.

Exit 4A volumes range between 8,700-10,700 vehicles per day (vpd) on the NB offramp and SB on-ramp, and from 15,200 to $19,000 \mathrm{vpd}$ on the NB on-ramp and SB off-ramp, respectively. The two northerly-oriented ramps have the higher volumes, consistent with the increased interaction between the new interchange and Exit 5. The projected volume on the connector road east of the Alternative A interchange is $53,700 \mathrm{vpd}$.

The local roadways are also affected by the introduction of a new interchange to the regional network. Volumes on NH Route 102 just east of Exit 4 are about half of the projected 2040 No-Build condition, while volumes closer to the downtown area show reductions of around 19%. Folsom Road shows significant increases, since it is now the primary connection between the new interchange and the local street network. Some of this increase continues easterly along the Tsienneto Road corridor (+3000 vpd over No-Build) and NH Route 102 east at the Chester town line (+1000 vpd over No-Build).

9.1.3 Alternative B

Mainline volumes on I-93 under this scenario show similar growth rates as Alternative A as compared to 2040 No-Build conditions. This is consistent with the earlier DEIS when comparing southerly versus northerly interchange locations.

Exit 4 ramp volumes show some differences as compared to Alternative A. Projected volumes on the NB on-ramp and SB off-ramp are slightly higher under Alternative B than A, but still $17-19 \%$ less than what they are under the No-Build case. This may be because Alternative B provides a section of new roadway onto the Derry street network, which may attract more traffic. The NB off-ramp shows a 10% volume reduction under Alternative B than under No-Build, similar to Alternative A. This development of Woodmont Commons to the west is reflected in an 8% increase in SB on-ramp volumes from the west side of the interchange, whereas the SB on-ramp volume from the east shows about a 44% reduction in projected traffic, similar to Alternative A.

Exit 5 ramp volumes show smaller increases on the NB off-ramp and SB on-ramp than under Alternative A. This continues to indicate the increased interaction between Exit 4A and 5 to and from the north more than between Exits 4 and 4A, which is consistent with the previous DEIS for this project. The Exit 5 SB off-ramp actually shows a greater reduction in traffic under Alternative B than under A, and this is reflected in a similarly higher volume at the Exit 4A SB off-ramp as compared to Alternative A. The Exit 5 NB on-ramp traffic is also lower than under No-Build conditions or Alternative A, indicating redistribution of some NB trips to Exit 4A and away from NH Route 28. These results appear to show that this alternative supports more of a north-south trip pattern than the east-west pattern exhibited under Alternative A.

Exit 4A volumes with Alternative B range between 9,500-12,400 vpd on the NB offramp and SB on-ramp, and from 13,200 to 19,400 vpd on the NB on-ramp and SB off-ramp, respectively. The SB on- and off-ramp volumes are higher than under Alternative A, but the NB on-ramp traffic is slightly lower than under Alternative A. The projected connector road volume east of the Alternative B interchange are about $54,500 \mathrm{vpd}$, and decrease to 16,200 vpd east of NH Route 28 along the Ashleigh Drive alignment.

The projected volumes on the local roadways under Alternative B have similar but generally slightly lower volumes than Alternative A. Volumes on NH Route 102 just east of Exit 4 are about 48% of the projected 2040 No-Build condition, while volumes closer to the downtown area show reductions around 19%. Folsom and Tsienneto Roads do not see the same increases as under Alternative A, since the new main connection road goes north of this area to intersect with Franklin Street Extension and Ashleigh Drive on the new alignment. The existing Tsienneto Road corridor sees minimal change since Alternative B creates a new roadway for the eastwest traffic that currently uses this roadway to access the Interstate, but traffic volumes at the east end of the study area are higher than under Alternative A.

9.1.4 Alternative C

Mainline volumes on I-93 south of Exit 5 under this scenario show slightly higher growth rates than the southerly interchange alternatives (A and B) when compared to 2040 No-Build conditions. Projected volumes north of Exit 5 are consistent across all interchange alternatives, being slightly higher than No-Build.

Exit 4 ramp volumes under this alternative are slightly lower than the southerly interchange options, notably on the NB on-ramp and SB off-ramp, but higher for the SB on-ramp from the east than either Alternative A or B. This is likely indicative of the increased distance of the northerly interchange from the NH Route 102 corridor and the expectation of less effectiveness in reducing east-west traffic through the downtown area.

Impacts on Exit 5 ramp volumes show larger reductions in both the NB on-ramp and SB off-ramp volumes than the southerly interchange options. This makes sense, given the greater proximity of Alternatives C (and D) to Exit 5, which further emphasizes the increased interaction between Exit 4A and 5 to and from the north more than between Exits 4 and 4A, which is consistent with the previous DEIS for this project.

Exit 4A ramp volumes for trips to/from the south with Alternative C are noticeably lower than with the southerly interchange options, ranging between $2,800-5,000 \mathrm{vpd}$ on the NB off-ramp and SB on-ramp. Trips on the NB on-ramp are similar to Alternative B but are lower on the SB off-ramp, respectively. The projected connector road volume east of the C interchange is less than under A or B (about $38,500 \mathrm{vpd}$), and decrease to 13,900 vpd west of NH Route 28 along the Ashleigh Drive alignment.

The projected volumes on the local roadways under Alternative C have similar but slightly larger volume reductions than Alternatives A or B. Volumes on NH Route 102 just east of Exit 4 are slightly lower than 2040 No-Build volumes but slightly higher than 2015 base conditions. Volumes further east on NH Route 102 show slightly larger reductions than under A or B . With the main connection road going north to NH Route 28 near the town line, volumes on this section of NH Route 28 more than double than under existing conditions. The existing Tsienneto Road corridor sees similar volume levels as Alternative B since C follows the new roadway to serve this east-west traffic demand.

9.1.5 Alternative D

Mainline volumes on I-93 under this scenario show similar growth rates as Alternative C as compared to 2040 No-Build conditions. This is consistent with the earlier DEIS where comparing southerly versus northerly interchange locations. Exits 4 and 5 ramp volumes under this option are also quite similar to Alternative C.

Exit 4A volumes with Alternative D are similar to Alternative C - the NB off-ramp and SB on-ramp volumes are lower than Alternative C but the SB off-ramp traffic is slightly higher. The projected connector road volume east of the Alternative D interchange is about $36,700 \mathrm{vpd}$.

The projected volumes on the local roadways under Alternative D have similarly but generally slightly lower reductions than Alternatives A or B. Volumes on NH Route 102 just east of Exit 4 are about the same as under 2015 base conditions, even if slightly lower than 2040 No-Build volumes. Volumes further east on NH Route 102 show smaller traffic reductions than any of the other interchange options. With the main connection road going north to NH Route 28 near the town line, volumes along this part of the NH Route 28 corridor more than double over existing conditions. The existing Tsienneto Road corridor also sees marked growth over existing volumes with this option since it follows the present roadway for east-west traffic.

9.1.6 Alternative F

Alternative F is essentially the Transportation Systems Management (TSM) option, which from the traffic model's perspective is essentially a third lane along NH Route 102 to provide some additional capacity at intersections east of Exit 4 into downtown Derry.

Mainline volumes on I-93 under this scenario show similar growth rates compared to 2040 No-Build conditions and lower than with an interchange alternative. This is consistent with the lower growth scenario as compared to those with a new interchange. Exits 4 and 5 ramp volumes under this option are also quite similar to 2040 No-Build conditions. With the provision of some additional capacity along the existing NH Route 102 corridor easterly into downtown Derry, traffic volumes are
higher than under No-Build conditions or with any of the interchange alternatives, so it does not meet the Purpose and Need for the project.

Figures 8 through 12 graphically show these volume comparisons by alternative for key areas of interest as part of this study: the Exit 4 ramps, Exit 5 ramps, Exit 4A ramps, points along the NH Route 102 corridor, and other local streets of interest, respectively.

9.2 Composition of Through Traffic in Downtown Derry

While the volume reductions may not be as profound on the surface as one might expect, it is the composition of the trips in the downtown area that are of interest, since one of the Purposes and Needs of the project is to reduce through traffic in downtown Derry that had neither an origin nor destination there. Existing travel patterns suggest that a good deal of existing traffic is already finding alternative routes to avoid the downtown area.

To test the sensitivity of the hypothesis of a reduction in 'through' traffic as a result of a new interchange, a link on NH Route 102 just west of the main downtown area, which is the location east of Griffin Street near the Beaver Brook bridge, was chosen as a representative location of downtown traffic. The SNHPC model can generate trip tables that will provide the origin and destination zone for trips on any link in the network in either direction. This traffic pattern was evaluated by comparing the number of trips from zones and external stations from the east and northeast that are currently assigned to that link under existing (2015) base, 2040 No-Build and 2040 -Alternative A conditions, which was the Preferred Alternative in the previous DEIS for this project, that might be diverted to another route/path under any Build scenario.

A series of TAZs from the SNHPC traffic model area to the east and northeast were aggregated to see how many trips remained on this link under the different scenarios, as shown in Figures 13 and 14. The ones of primary interest were noted as follows:

- North Derry - TAZs 121-124, 126, 127
- East Derry - TAZs 128-130, 145-147, 221, 225
- Chester - TAZs 148-155
- Raymond/Deerfield/Candia - TAZs 156-191
- External Stations east and northeast - Stations 308-324

Table 8 shows a summary of the assigned trips to this link in each direction as well as combined under the three scenarios. In summary, the table shows that, in general, the trips to and from these zones to the east that now pass through the downtown area are lower with an interchange alternative (in this case, Alternative A) in place than under the 2040 No-Build scenario. However, since the overall link volume is reduced as well, these trips make up a slightly higher percentage of the total trips on that link than under NoBuild conditions. This appears logical, because this link is likely the shortest path from these easterly zones to destinations in downtown Derry. Nevertheless, this analysis appears to show that an interchange alternative will reduce the amount of through traffic in downtown Derry for trips to and from the east and northeast.

TABLE 8
SELECT LINK ANALYSIS NH ROUTE 102, EAST OF GRIFFIN ROAD, DERRY, NH

Eastbound (To)	N Derry	E Derry	Chester	Raymond/Candia/ Deerfield	N/NE/SE External Stations				
Traffic Zones	$\begin{gathered} \text { 121-124. } \\ 126,127 \end{gathered}$	$\begin{aligned} & 128-130 \\ & 145-147 \\ & 221,225 \\ & \hline \end{aligned}$	148-155	156-191	308-324	Target zone total	Increase over 2015 Base	Total trips on link	$\%$ of total to target zones
2015 Base	1194	642	162	293	1209	3500		8,806	39.7\%
$\%$ total on link	13.6\%	7.3\%	1.8\%	3.3\%	13.7\%				
2040 No-Build	1332	1056	130	78	1282	3878	1.1\%	9,642	40.2\%
\% total on link	13.8\%	11.0\%	1.3\%	0.8\%	13.3\%				
2040 Alt A	571	1235	236	146	1845	4033	1.2\%	9,108	44.3\%
\% total on link	6.3\%	13.6\%	2.6\%	1.6\%	20.3\%				
Westbound (From)	N Derry	E Derry	Chester	Raymond/Candia/ Deerfield	N/NE/SE External Stations				
Traffic Zones	$\begin{gathered} 121-124 . \\ 126,127 \end{gathered}$	$\begin{aligned} & 128-130, \\ & 145-147, \\ & 221,225 \\ & \hline \end{aligned}$	148-155	156-191	308-324	Target zone total	Increase over 2015 Base	Total trips on link	$\%$ of total to target zones
2015 Base	1177	814	114	192	760	3057		9,191	33.3\%
\% total on link	12.8\%	8.9\%	1.2\%	2.1\%	8.3\%				
2040 No-Build	1663	1465	64	37	773	4002	1.1\%	11,168	35.8\%
\% total on link	14.9\%	13.1\%	0.6\%	0.3\%	6.9\%				
2040 Alt A	307	1097	156	113	1073	2746	0.8\%	7,776	35.3\%
\% total on link	3.9\%	14.1\%	2.0\%	1.5\%	13.8\%				
Both Directions	N Derry	E Derry	Chester	Raymond/Candia/ Deerfield	N/NE/SE External Stations				
Traffic Zones	$\begin{gathered} 121-124 . \\ 126,127 \end{gathered}$	$\begin{aligned} & 128-130, \\ & 145-147, \\ & 221,225 \end{aligned}$	148-155	156-191	308-324	Target zone total	Increase over 2015 Base	Total trips on link	\% of total to target zones
2015 Base	2371	1456	276	485	1969	6557		18,002	36.4\%
\% total on link	13.2\%	8.1\%	1.5\%	2.7\%	10.9\%				
2040 No-Build	2995	2521	194	115	2055	7880	2.3\%	20,810	37.9\%
\% total on link	14.4\%	12.1\%	0.9\%	0.6\%	9.9\%				
2040 Alt A	878	2332	392	259	2918	6779	1.9\%	16,885	40.1\%
\% total on link	5.2\%	13.8\%	2.3\%	1.5\%	17.3\%				

9.3 Comparison to I-93 SEIS 2030 Mainline Projections

An additional comparison was made to the projected 2030 mainline volumes on I-93 as shown in the SEIS for the I-93 project (NHDOT, 2009). This document utilized the statewide traffic model that was available at the time, and also included the proposed Exit 4A Preferred Alternative as part of the network.

However, there are some major differences between the two scenarios. First, there are two different design years: the I-93 SEIS went out only to 2030 while this Exit 4A SDEIS extends out to 2040 , so there are ten more years of overall growth that contributes additional traffic onto the network. Secondly, the I-93 SEIS did not account for the full Woodmont Commons development scenario included in the Exit 4A project for the Preferred Alternative, which adds a substantial number of trips to the area in and around Exit 4 and the proposed Exit 4A. Given these factors, it is expected that design hourly volumes would be higher under the 2040 case.

Table 9 shows excerpts from Tables 4-12 and 4-13 from the 2009 I-93 SEIS, which includes the projected ADT and DDHV for 2020 and 2030 from that document. The current table includes a projection of these volumes to 2040 using the same growth rates, including Exit 4A which was included in the I-93 SEIS Build condition, and the projected AAWDT and DDHV from the latest SNHPC modeling to the 2040 design year, and a comparison between the two modelling efforts.

These comparisons show that the more recent SNHPC AAWDT traffic projections are consistent with the growth trend line from the I-93 SEIS if it were extended to the same 2040 design year within less than 4%. Similarly, the differences calculated DDHV extended to 2040 are within 3% when using the same methodology. The last two points on the graphs compare the 2040 projections for both the I-93 numbers and the latest SNHPC projections. Therefore, it would appear that the two modelling efforts are reasonably close to each other when extending the original I-93 design horizon out to 2040.

The original I-93 SEIS also noted that the congested flow capacity for I-93 would be $1,800 \mathrm{vph}$ per lane, which would be $7,200 \mathrm{vph}$ for the projected four-lane Interstate project. Should this volume be exceeded, the volumes would have to be adjusted to account for the effect of peak spreading that would likely occur into the adjacent hours before and after this demand was projected. At first glance, it appears that this scenario may also occur between Exits 4A and 5 and north of Exit 5 when using the SNHPC 2040 model projections, using the same DDHV calculation assumptions as in the I-93 SEIS. However, a more detailed review of the projected 2040 mainline volumes, which are discussed below, indicates that this $7,200 \mathrm{vph}$ threshold will not likely be reached under any Exit 4A scenario.

TABLE 9

COMPARISON OF I-93 SEIS AND EXIT 4A SDEIS TRAFFIC PROJECTIONS 2020, 2030 AND 2040 DESIGN YEARS, INCLUDING EXIT 4A

Average Annual Weekday Traffic (AAWDT) Projections

I-93 Segment	I-93 SEIS				SNHPC 2040 Model Projections Alternative A	\% Difference
	2020	2030	Growth	Projected		
	Build	Build	Rate/Year	To 2040		
Exit 3 to Exit 4	94,800	109,000	1.014	125,330	120,860	-3.6\%
Exit 4 to Exit 4A	88,200	101,500	1.014	116,810	118,015	1.0\%
Exit 4A to Exit 5	100,600	116,100	1.014	133,990	132,734	-0.9\%
North of Exit 5	97,600	113,100	1.015	131,060	128,466	-2.0\%

Notes:
DDHV calculated as 9.4% of ADT with a 60/40 directional split, consistent with I-93 SEIS, using Scenario 2 (OEP Projections)

Source: NHDOT, Supplemental Environmental Impact Statement and Reevaluation/Section4(f)
Evaluation, August 2009, Tables 4-12 and 4-13

TABLE 9 (Cont'd)
COMPARISON OF I-93 SEIS AND EXIT 4A SDEIS TRAFFIC PROJECTIONS 2020, 2030 AND 2040 DESIGN YEARS, INCLUDING EXIT 4A

Directional Design Hourly Volume (DDHV) Projections

	I-93 SEIS				SNHPC 2040	
I-93 Segment	Build	Build	Growth	Projected	Calculated DDHV	
				Coar	To 2040	Alternative A

Notes:
DDHV calculated as 9.4% of ADT with a 60/40 directional split, consistent with I-93 SEIS, using Scenario 2 (OEP Projections)

Source: NHDOT, Supplemental Environmental Impact Statement and Reevaluation/Section4(f)
Evaluation, August 2009, Tables 4-12 and 4-13

10.0 Derivation of 2040 Volumes for Analysis Purposes

Now that the projected 2040 AAWDT volumes have been provided by the SNHPC model and appear to be reasonable, these need to be reduced to AM and PM peak volumes for analysis purposes. Since the SNHPC model provides only daily volumes, these must be reduced to peak hours on both the I-93 mainline and interchange ramp terminals as well as at the various study area intersections that may be directly or indirectly affected by any alternative. Different procedures were used to develop these volumes to be used for analysis purposes.

As noted earlier, the full development potential of Woodmont Commons was assigned to the study area traffic model network as a worse-case scenario, but if much of the sitegenerated traffic is captured internally to the site - as is the design intent of this mixeduse development - operations would be better than projected and the design life of any roadway and intersection improvements would be extended.

10.1 Mainline Interstate Volumes

A different procedure was used to generate the 2040 No-Build interstate networks as was done for deriving the 2015 base network for calibration. The projected 2040 AAWDT was calculated based on the projected growth (positive or negative) reflected in the model assignments on that segment between 2015 and 2040, then this growth rate was applied to the adjusted 2015 AAWDT. Then, the 2040 projected AM and PM peak hour volumes were derived based on the percentage that the existing (2015) AM and/or PM peak hour volume was as a percentage of the adjusted 2015 AAWDT, since these percentages should not change substantially over time. These peak hour percentages generally fell in the range of $6-9 \%$ of AAWDT. Tables J-1 through J-6 in Appendix J show summary tables of the projected 2040 peak hour volumes for each alternative on the key links on the interstate and local roadway networks.

As in the 2015 base case, the most logical starting point for developing the balanced interstate networks is south of Exit 4, where NHDOT permanent recorder data should provide more reliability. The various interchange ramp volumes were then taken directly from the appropriate tables in Appendix J, and the mainline volumes were balanced through the network to the point north of Exit 5. This process was followed to develop 2040 AM and PM peak hour volumes along the Interstate for each alternative, which are shown graphically in Figures 15 through 26.

10.2 Local Intersection Volumes

A more detailed procedure was needed to derive peak hour intersection volumes for each alternative from the regional traffic model to be used for design purposes. Since the SNHPC model only provides daily volumes, a relationship needs to be established between the peak hour volumes from the actual turning movement count at any intersection and the model output that can be made available. The SNHPC model can provide daily volumes between any two nodes through one central node that would
simulate movements at an intersection. As such, information was requested from SNHPC for the daily model assignments for each study area intersection for each alternative to assist in developing turning movements at each location. Then a procedure was developed to estimate intersection turning movements at each study area location based on the existing turning movement volumes for both the AM and PM peak hours and how the total and individual turn volumes change as a result of the reassignment of traffic under any scenario. This process had to be usable regardless of alternative or the magnitude of change in traffic assignments for any movement at a specific intersection from one alternative to another. The procedure is discussed in greater detail in the memorandum dated September 29, 2017, which is attached in Appendix K. The memo was reviewed and approved by the NHDOT before the procedure was applied to the rest of the alternatives (NHDOT, 2017c).

The resulting AM and PM peak hour volumes for each study area intersection for each of the 2040 alternatives are provided in Figures 27 through 38.

11.0 Analysis of Interstate Operations

As in the existing case, the Freeway Facilities procedure from the 2010 HCM and replicated in the HCS was used to evaluate the mainline interstate operations under all 2040 conditions. A free flow speed of 70 mph and a Peak Hour Factor of 0.94 were agreed upon by NHDOT (NHDOT, 2017d) to be used in the HCM analysis. With the introduction of a northerly or southerly interchanges, certain design parameters consistent with the I-93 layout were agreed upon with the NHDOT to ensure that the appropriate distances would be used in the analyses. A conceptual layout for the southerly interchange for Alternatives A and B had already been provided in the 2007 DEIS as well as part of the I-93 design between Exits 4 and 5, and was used to determine ramps spacing for analysis purposes. The previous conceptual layout for the northerly interchange for Alternatives C and D from the 2007 DEIS was used as the starting point for this study.

The HCM procedure accounts for a 1,500 foot 'influence area' in the ramp merge or diverge areas. With the southerly interchange, there is overlap between the influence areas of the Exit 4 NB on-ramp and the Exit 4A NB off-ramp, as well as the Exit 4A SB on-ramp and the Exit 4 SB off-ramp. As such, the HCS analysis software allows for this overlap to be considered, and is reflected in the results.

The Freeway Facilities criteria in the HCS were provided in Appendix E when the 2015 operations were discussed for the existing two-lane facility. The 2040 results for the proposed four-lane facility are summarized in Table 10 with the HCM printouts provided in Appendix L. By definition, if the demand/ capacity (d / c) ratio is greater than 1.00 , ramp merge/diverge or mainline operations will be constrained, either by traffic unable to merge onto the interstate and subsequently affecting 'topside' operations at the ramp terminals, or by the off-ramp being unable to process the demand for exiting traffic, which may affect mainline traffic free flow speeds.

The 2040 cases where d / c ratios are 0.98 or greater, indicating potential capacity constraints to I-93 operations with a single-lane ramp, are noted below:

- Alternative A - Exit 4A SB off-ramp diverge - AM peak
- Alternative B - Exit 4A SB off-ramp diverge - AM peak
- Alternative B - Exit 4 NB on-ramp merge - AM peak
- Alternative B - Exit 4 SB off-ramp diverge - PM peak
- Alternative F - Exit 4 NB on-ramp merge - AM and PM peaks
- Alternative F - Exit 4 SB off-ramp diverge - PM peak

These results appear to reflect the increased demands from the higher development scenarios from the Woodmont Commons development under Alternatives A and B, as well as the projected limitations at the Exit 4 interchange with Alternative F in place, even with a lesser development scenario for Woodmont Commons.

If the projected Exit 4 NB on-ramp volumes reach levels where the merge with the mainline I-93 is affected as shown, it would likely result in backups of traffic back to the ramp terminal itself, affecting the topside intersections along NH Route 102. Both the Exit 4 and Exit 4A SB off-ramp diverge constraints could be ameliorated by providing a two-lane off-ramp to service the projected traffic should actual volumes meet projections in the future.

However, given the aforementioned discussion about the possible realization of the Woodmont Commons internal capture rate and the subsequent reduction in traffic assignments onto the study area network, a sensitivity analysis was conducted at the Exit 4A SB off-ramp to determine what kind of volume reduction would be needed to provide an acceptable LOS for a single-lane off-ramp at this location. If the projected off-ramp AM peak volume was reduced by only 200 vph , this ramp would function at a LOS D with a demand/capacity ratio of 0.94 , which would be acceptable. Therefore, should the full impact of the traffic projections from Woodmont Commons or the overall study area development scenario not be realized, the ramps that are projected to be capacityconstrained may operate better than these analyses would indicate.

12.0 Estimated Contribution of Woodmont Commons Traffic to Interstate Ramp Volumes

During the review of the traffic projections, the NHDOT inquired as to the potential impact that traffic from the Woodmont Commons development may have on the Exit 4 ramps under the various alternatives, since the southerly interchange alternatives (A and B) assume a higher intensity of development that under all other alternatives, including the No-Build.

As noted earlier, the 2040 projections from the SNHPC regional traffic model do not account for the same level of 'internally captured' trips within the development itself in the traffic assignments used for the Exit 4A project, as opposed to the site-specific traffic study prepared for the Woodmont project that assumed as much as a 23% internal captured trip rate in their projections and traffic assignments (TEC, 2013). Nevertheless, the model assignments should be able to present an 'order of magnitude' assessment of the relative contribution of traffic to the Exit 4 and 4A ramps from the three traffic analysis zones that Woodmont Commons would eventually occupy.

To accomplish this, SNHPC was tasked with providing 'select link' assignments to the Exit 4 and 4A ramps for trips from the three Woodmont Common zones (Zone 277 to the west, and Zones 69 and 375 to the east) under different scenarios: 2015 No-Build; 2040 No-Build; and 2040 Build with either Alternative A (southern interchange) and Alternative C (northern interchange). This information was summarized in a technical memo provided to the NHDOT for their review and concurrence (CLD, 2018), which is attached in Appendix M.

The results show that under the 2015 No-Build case, the three Woodmont zones only account for about 13% of the total traffic volume on all Exit 4 ramps, almost exclusively from the existing development in Zone 277 on the west side of I-93 in the Garden Lane area. Under the 2040 No-Build condition, the total volumes on the Exit 4 ramps would more than double, even with a lesser Woodmont development scenario, and these three zones now comprise almost 27% of this total Exit 4 ramp traffic and almost 40% of the projected increase in traffic.

With Exit 4A in place under Alternative A, which also assumes the most intense Woodmont development scenario, traffic assignments from the three subject zones account for 36% of the total Exit 4 ramp volume, most of which comes from Zone 277 on the west side. At Exit 4A, the two easterly Woodmont zones also account for 36% of total Exit 4A ramp traffic with no traffic assigned to these ramps from the west side.

With Alternative C in place, which assumes the same development scenario for Woodmont as in the 2040 No-Build case, the total traffic on the Exit 4 ramps is roughly the same as under Alternative A, but the Woodmont contribution is a slightly lower percentage (32%) of the total. At Exit 4A, Woodmont traffic would comprise only about 1% of the total ramp assignments, given that it is further removed from the traffic zones in question.

This analysis is only intended to show the relative potential contribution of Woodmont Commons traffic to both Exits 4 and 4A based on the full assignment of this traffic to the network as reflected in the SNHPC regional traffic model. As the Woodmont Commons development progresses and traffic is added to the adjacent road network, this situation should be monitored to determine how the actual additional traffic impacts affect overall traffic operations. Should the magnitude of the 'internal capture' trip rate be closer to what the TEC study anticipated, operations on the ramps, their intersections with the local road system, and the overall Interstate system would be better than by using the more conservative SNHPC model projections.

13.0 Exit 4A and Connecting Roadways

The Exit 4A interchange is currently proposed as a diamond configuration with access only to and from the east. As such, it creates two new ramp terminal intersections that will be provided with sufficient lanes to operate at an acceptable LOS. The connector road to the existing roadway network was assumed to be a four-lane limited access arterial roadway between the interchange and NH Route 28 to the east, with future breaks in access reserved for the proposed Woodmont Commons-East parcel based on their future development layout. New intersections would be created under all Build alternatives and existing intersections that would be affected by each of the respective layouts would need to be upgraded, which will be discussed in the next section.

The following is a listing of new intersections created by the connector roadway under the various interchange alternatives:

- Alternative A - Connector Road with North High Street.
- Alternative B - Connector Road with Franklin Street Extension, NH Route 28 Bypass, and relocated Tsienneto Road. In addition, the existing intersection with Ashleigh Drive will be reconfigured.
- Alternative C-Connector Road with NH Route 28 near the Londonderry town line, as well as NH Route 28 Bypass and relocated Tsienneto Road.
- Alternative D - Connector Road with NH Route 28 near Londonderry town line.

14.0 Analysis of Local Intersection Operations

Only those known programmed projects in the SNHPC 2040 Long-Range Transportation Plan (SNHPC, 2017) were included as foreseeable projects in the traffic modeling for this study. However, it is also assumed that ongoing State and Town traffic maintenance projects, such as signal retiming and optimization, will occur during the duration of the design horizon. Therefore, any intersection analyses assumes the optimization of signal timing and phasing at a specific location as a base condition, with any additional lane improvements evaluated as an impact associated with a specific alternative.

In addition, the Woodmont Commons development has also developed conceptual plans along the NH Route 102 corridor, as well as other intersections in Londonderry and Derry, to accommodate their projected traffic as that project moves forward (TEC, 2013). The NHDOT has agreed that these projects should be considered as part of the 2040

No-Build condition (NHDOT, 2016f). While most of these future improvements on NH Route 102 are west of Exit 4, including the Garden Lane and Gilcreast Road intersections, there are other improvements in the Exit 4A study area east of I-93 that will be considered as part of this No-Build condition for analysis purposes. These include:

- \# 5 - NH Route 102/Londonderry Road intersection - signalization and lane additions, including a second east-west through lane on NH Route 102.
- \# 8- North High Street/Ash Street Extension - providing a four-way stop controlled intersection, as well as separate left- and right-turn lanes exiting Ash Street, and adding an exclusive SB right-turn lane from North High Street onto Ash Street Extension.

It also should be noted that not all of the study area intersections are directly affected by the Exit 4A alternatives, even though the redistribution of traffic will have an indirect effect. Only those intersections that a specific alternative passes through were considered for any additional improvements as part of the project to maintain an acceptable LOS D or better for the overall intersection as well as on any individual approach. Analyses were conducted for all of the study area intersections, either with or without any required improvements.

It was also assumed that signalization would be required at many of the existing unsignalized locations where an alternative passes through it or where new intersections were being created at major State or local roadways. No formal signal warrants study was performed, but engineering judgment was applied to treat each of these locations the same if they were part of the layout of an alternative. Conversely, if the alternative did not go through that location, the existing traffic control was assumed to remain in place, regardless of operational efficiency, since these locations have not yet been programmed for further improvements.

15. Signalized Intersections

A summary table for the comparison of lane use and operations at each existing or proposed signalized intersection is provided in Table 11. No additional improvements to the lane use at the Exits 4 and 5 ramp terminals were investigated as part of any Build alternative, since these are being reconstructed as part of the ongoing I-93 project. The results are provided using the HCM 2000 procedures, since these procedures can address many non-standard timing and phasing parameters that later versions of the HCM cannot, as well as to be consistent with the Interstate Justification Report being conducted separately. (Louis Berger, 2018). The actual HCM and Synchro printouts for all the 2040 alternatives are provided in Appendices N through S.

Intersection	2040 Alternative	Table 11 0 Capacity Analyses by Alternative $\underline{\text { Signalized Intersections }}$						
		AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
		$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#1-Exit 4 SB Off Ramp/NH 102	No-Build	1.08	44.5	D	1.22	106.4	f	Current lane use per I93 project Current lane use per 193 project
	Alternative A	0.92	25.9	C	1.09	50.9	D	
	Alternative B	0.93	26.8	C	1.09	53.9	D	
	Alternative C	1.00	36.1	D	1.09	57.2	E	
	Alternative D	0.99	35.1	D	1.11	59.6	E	
	Alternative F	1.09	51.0	D	1.14	61.5	E	
\#2 - Exit 4 NB Off Ramp/NH 102	No-Build	1.10	61.4	E	1.12	92.8	F	Current lane use per 193 project
	Alternative A	1.04	71.2	E	1.11	115.1	F	
	Alternative B	0.99	54.8	D	1.06	88.0	F	
	Alternative C	1.02	62.1	E	1.05	82.0	F	
	Alternative D	1.04	67.3	E	1.06	81.8	F	
	Alternative F	1.06	57.5	E	1.15	91.8	F	
$\begin{aligned} & \text { \#3 - Exit } 5 \text { SB Off } \\ & \text { Ramp/NH } 28 \end{aligned}$	No-Build	1.17	77.0	E	0.90	31.2	C	Current lane use per I93 project Current lane use per 193 project Current lane use per 193 project Current lane use per 193 project Current lane use per I93 project Current lane use per 193 project
	Alternative A	1.06	49.3	D	0.83	20.1	C	
	Alternative B	0.86	28.0	C	0.70	16.9	B	
	Alternative C	0.83	22.9	C	0.62	15.0	B	
	Alternative D	0.82	23.3	C	0.61	15.2	B	
	Alternative F	1.10	62.1	E	0.87	27.8	C	
\#4 - Exit 5 NB Off Ramp/NH 28	No-Build	1.10	51.7	D	1.04	37.7	D	Current lane use per 193 project
	Alternative A	1.11	63.0	E	0.99	39.2	D	
	Alternative B	1.03	50.2	D	0.93	33.9	C	
	Alternative C	1.02	49.9	D	0.87	27.7	C	
	Alternative D	1.02	50.5	D	0.89	32.6	C	
	Alternative F	1.07	44.0	D	0.99	35.1	D	
\#5 - NH Rte 102/Londonderry Rd/ St. Charles Street	No-Build	0.85	17.7	B	1.16	67.5	E	Add 2nd E-W lane per Woodmont concept
	Alternative A	0.52	11.4	B	0.58	14.8	B	
	Alternative B	0.48	7.2	A	0.54	14.2	B	
	Alternative C	0.52	8.2	A	0.53	13.1	B	
	Alternative D	0.56	8.3	A	0.65	16.3	B	
	Alternative F	0.75	12.3	B	0.87	27.9	C	
\#6 - NH Rte 102/Fordway/Madden Hill Road	No-Build	0.92	30.8	C	1.04	47.3	D	Current lane use Add NB LT, EB RT lanes
	Alternative A	0.79	23.4	C	0.99	42,5	D	
	Alternative B	0.80	23.0	C	0.91	29.1	C	
	Alternative C	0.78	22.3	C	0.92	30.0	C	
	Alternative D	0.81	23.2	C	0.94	30.2	C	
	Alternative F	0.93	28.7	C	0.96	29.9	C	
\#7-NH Rtes 102/28	No-Build	0.88	47.4	D	0.79	37.5	D	Current lane use Add NB LT, WB Th, EB RT lanes
	Alternative A	0.89	55.3	E	0.84	47.9	D	
	Alternative B	0.87	44.1	D	0.80	40.5	D	
	Alternative C	0.77	35.0	C	0.84	40.2	D	
	Alternative D	0.89	48.1	D	0.86	46.2	D	
	Alternative F	0.63	28.6	C	0.83	34.0	C	

Table 11 (Cont'd) Summary of 2040 Capacity Analyses by Alternative Signalized Intersections								Comments/ Lane Use Revisions
Intersection	2040 Alternative	AM Peak Hour			PM Peak Hour			
		$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	
\#9A - Connector Rd/N High $\mathbf{S t}$	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	0.59	$\begin{aligned} & \hline \mathrm{n} / \mathrm{a} / \\ & 25.0 \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	C	0.95	n/a/ 37.5 $\mathrm{n} / \mathrm{a} /$ $\mathrm{n} / \mathrm{a} /$ n/a/ n/a/	D	Does not exist Prop lane use: EB - T,T,R; WB-L,T,T; NB- L,L,R lanes Does not exist Does not exist Does not exist Does not exist
\#10-N High/Folsom/Franklin Sts.	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	0.65	$\begin{aligned} & \mathrm{n} / \mathrm{a} / \\ & 17.9 \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	B	0.92	$\begin{aligned} & \mathrm{n} / \mathrm{a} / \\ & 32.2 \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	C	Would remain unsignalized EB - L,T,T,TR; WB-L,T,TR; SB- LT,R; NB- L,TR lanes Would remain unsignalized Would remain unsignalized Would remain unsignalized Would remain unsignalized
\#11- Ross' Corner (Folsom/NH 28)	No-Build Alternative A	$\begin{aligned} & \hline 0.72 \\ & 0.56 \end{aligned}$	$\begin{aligned} & \hline 91.3 \\ & 22.3 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 56.4 \\ & 32.9 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	Current lane use Add 2nd EB LT and Th lanes; add 2nd WB Th lane
	Alternative B Alternative C Alternative D	$\begin{aligned} & 0.49 \\ & 0.73 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 28.4 \\ & 32.5 \\ & 27.0 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.83 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 38.3 \\ & 46.1 \\ & 35.2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	Current lane use Current lane use Add 2nd EB LT lane; add 2nd WB RT lane
	Alternative F	0.61	32.6	C	0.72	42.7	D	Current lane use
\#12 - Tsienneto Rd/Pinkerton St	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	$\begin{aligned} & 0.61 \\ & 0.69 \end{aligned}$	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 13.7 \\ \mathrm{n} / \mathrm{a} / \\ \mathrm{n} / \mathrm{a} / \\ 20.1 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	B	$\begin{aligned} & 0.65 \\ & 0.64 \end{aligned}$	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 12.5 \\ \mathrm{n} / \mathrm{a} / \\ \mathrm{n} / \mathrm{a} / \\ 24.2 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	B	Would remain unsignalized Signalized and coord with Ross' Corner Would remain unsignalized Would remain unsignalized Signalized and coord with Ross' Corner Would remain unsignalized
\#13-NH 28/Linlew Dr	No-Build	0.41	18.9	B	0.48	17.2	B	Current lane use
	Alternative A	0.19	11.7	B	0.46	25.0	C	Current lane use
	Alternative B	0.36	6.3	A	0.49	13.8	B	Current lane use
	Alternative C	0.39	5.2	A	0.49	12.9	B	Current lane use
	Alternative D	0.56	14.9	B	0.78	20.4	C	Current lane use
	Alternative F	0.28	11.3	B	0.40		B	Current lane use
\#14-NH 28/Ashleigh Dr \#22-B/C Connector/NH 28	No-Build	0.43	17.3	B	0.59	24.8	C	Current lane use
	Alternative A		17.0	B	0.48	21.7	C	Current lane use
	Alternative B	0.73	26.8	C	0.83	35.6	D	Revised Lane Use: EB- L,T,R; WB- L,L,T,TR; NB-L,T,T,R,R; SB-L,T,T,R

Table 11 (Cont'd) Summary of 2040 Capacity Analyses by Alternative Signalized Intersections								
		AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
Intersection	2040 Alternative	$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	$\begin{aligned} & \mathrm{v} / \mathrm{c} \\ & \text { ratio } \end{aligned}$	Average Delay	LOS	
\#22-B/C Connector/NH 28	Alternative C Alternative D Alternative F	$\begin{aligned} & \hline 0.71 \\ & 0.58 \\ & 0.38 \end{aligned}$	$\begin{aligned} & \hline 22.0 \\ & 21.0 \\ & 16.9 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 0.84 \\ & 0.84 \\ & 0.55 \end{aligned}$	29.7 34.8 26.2	C C C	Revised Lane Use: EB- L,L,T,TR; WBL,T,TR; NB-L,TR; SB-LT,R Add WB RT lane to current lane use Current lane use
$\begin{aligned} & \text { \#18 - NH Byp 28/Tsienneto } \\ & \text { Rd } \end{aligned}$	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	0.69 0.64 0.54 0.58 0.56 0.74	$\begin{aligned} & \hline 58.1 \\ & 33.6 \\ & 32.4 \\ & 23.9 \\ & 25.2 \\ & 32.4 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 0.90 \\ & 0.80 \\ & 0.59 \\ & 0.79 \\ & 0.60 \\ & 0.87 \end{aligned}$	$\begin{gathered} \hline 112.0 \\ 23.8 \\ 33.0 \\ 28.4 \\ 22.9 \\ 34.8 \end{gathered}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{C} \end{aligned}$	Current lane use Add 2nd EB/WB Th lanes Current lane use Current lane use Add 2nd EB/WB Th lanes Current lane use
$\begin{aligned} & \text { \#19 - NH 102/Tsienneto Rd, } \\ & \text { coord w/ } \\ & \text { \#26 - NH 102/North Shore } \\ & \text { Rd } \end{aligned}$	$\begin{gathered} \text { No-Build * } \\ \text { Alternative A } \\ \text { Alternative B } \\ \text { Alternative C } \\ \text { Alternative D } \\ \text { Alternative F* } \end{gathered}$	0.53 0.62 0.60 0.60 0.63 0.30	$\begin{aligned} & 24.9 \\ & 13.2 \\ & 11.0 \\ & 12.7 \\ & 12.1 \\ & 24.3 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 1.53 \\ & 0.76 \\ & 0.61 \\ & 0.60 \\ & 0.65 \\ & 1.46 \end{aligned}$	$\begin{gathered} 247.7 \\ 19.6 \\ 9.9 \\ 9.0 \\ 6.9 \\ 247.5 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \mathrm{D} \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{~F} \end{gathered}$	LOS as unsignalized Add EB LT, WB RT lanes at signal LOS as unsignalized
\#20 - Exit 4A SB off ramp/Connector Rd	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	$\begin{aligned} & 0.97 \\ & 1.04 \\ & 0.73 \\ & 0.70 \end{aligned}$	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 41.2 \\ 52.3 \\ 20.1 \\ 19.2 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	D D C B	$\begin{aligned} & 0.88 \\ & 0.94 \\ & 0.65 \\ & 0.63 \end{aligned}$	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 28.9 \\ 34.6 \\ 18.3 \\ 18.2 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	C C B B	Does not exist 2 SB LT lanes from off-ramp, 2 WB LT lanes to on-ramp 2 SB LT lanes from off-ramp, 2 WB LT lanes to on-ramp 2 SB LT lanes from off-ramp, 2 WB LT lanes to on-ramp 2 SB LT lanes from off-ramp, 2 WB LT lanes to on-ramp Does not exist
\#21-Exit 4A NB off ramp/Connector Rd	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	$\begin{aligned} & 0.93 \\ & 0.97 \\ & 0.65 \\ & 0.59 \end{aligned}$	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 20.4 \\ 27.5 \\ 7.9 \\ 5.7 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.88 \\ & 0.58 \\ & 0.53 \end{aligned}$	$\mathrm{n} / \mathrm{a} /$ 16.1 15.8 7.1 5.1 $\mathrm{n} / \mathrm{a} /$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	Does not exist EB - T,T; WB T,T,R,R; NB- LR,R Does not exist
\#23-B/C Connector Road/NH Bypass 28	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	$\begin{aligned} & 0.25 \\ & 0.37 \end{aligned}$	$\begin{aligned} & \hline \mathrm{n} / \mathrm{a} / \\ & \mathrm{n} / \mathrm{a} / \\ & 17.0 \\ & 18.5 \\ & \\ & \mathrm{n} / \mathrm{a} / \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	B	0.32 0.46	$\begin{aligned} & \mathrm{n} / \mathrm{a} / \\ & \mathrm{n} / \mathrm{a} / \\ & 16.9 \\ & 20.4 \\ & \mathrm{n} / \mathrm{a} / \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	B	Does not exist Does not exist Prop lane use: EB- L,T,TR; WB- L,T,TR; NB- L,TR; SB-L,T,R Prop lane use: EB- L,TR; WB- L,TR; NB- L,TR; SB-L,T,R Does not exist Does not exist

Intersection	Table 11 (Cont'd) Summary of 2040 Capacity Analyses by Alternative Signalized Intersections							
	2040 Alternative	AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
		v/c ratio	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#25-C/D Connector	No-Build		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$		Does not exist
Road/NH 28	Alternative A		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$		Does not exist
	Alternative B		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$		Does not exist
	Alternative C	0.81	10.6	B	0.79	12.2	B	Prop lane use: EB- L,T,T; WB- T TR, SB- L,R
	Alternative D	0.96	13.7	B	0.87	14.1	B	Prop lane use: EB- L,T,T; WB- T TR, SB- L,R
	Alternative F		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$		Does not exist

\#1 - Exit 4 SB off-ramp at NH Route 102

The results show that this ramp terminal as presently proposed will still experience capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives appear to function better than No-Build, with Alternatives A and B doing better than the northerly or no interchange alternatives, even though they both have a higher potential development scenario for Woodmont Commons than the others. The heavy SB right turn onto NH Route 102 from the ramp, even with two lanes, combined with heavy WB flow from the NB ramps located to the east, contribute to the decline in LOS. The single left turn lane from the off-ramp also appears insufficient to handle the peak hour demands.

\#2 - Exit 4 NB ramps at NH Route 102

The results show that this ramp terminal as presently proposed will also experience capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives improve 2040 AM peak hour operations, with Alternatives C and D doing slightly better than Alternatives A and B in the PM peak. The heavy EB left-turn onto the on-ramp, even with two lanes, is the dominant volume at this location, as well as the NB left turn from the off-ramp. Alternatives C and D appear to operate at a slightly better LOS, but the Woodmont Commons development scenario is also less intense in these cases than under Alternatives A and B. Alternative F fares worse than any of the alternatives as proposed.

\#3 - Exit 5 SB ramps at NH Route 28

The results show that this ramp terminal as presently proposed will still experience some capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives provide better operations than the No-Build condition. The single WB left turn and SB right-turn lanes appear to be the constraints to better operations across all alternatives. Alternatives C and D appear to function better than No-Build or the southerly or no interchange alternatives, likely because of their proximity to this interchange and the increased likelihood of diverting some of the traffic demand, as opposed to the other alternatives.

\#4 - Exit 5 NB ramps at NH Route 28

The results show that this ramp terminal as presently proposed will also experience capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives provide slightly better operations than under No-Build conditions. The heavy EB left-turn demand onto the on-ramp in a single lane, as well as the single-lane NB left turn from the off-ramp, are the critical movements at this intersection. Alternatives C and D appear to operate at a slightly better LOS than Alternatives A and B, again because of their proximity to this interchange and increased likelihood of diverting some of the traffic demand. Alternative F fares worse than any of the alternatives as proposed.

\#5 - NH Route 102/Londonderry Road/St. Charles Street

With the addition of a second east-west through lane on NH Route 102 as part of the proposed Woodmont Commons improvements, this intersection would operate at acceptable LOS under all alternatives. Alternative F would operate slightly worse than the other alternatives, because of projected increased traffic on NH Route 102, but would still be at an acceptable LOS.

\#6 - NH Route 102/Fordway/ Madden Hill Road

This existing intersection would operate at acceptable LOS under all alternatives except Alternative F. Alternative A appears to draw more traffic to the Madden Hill Road approach that opposes the heavy Fordway volumes on the same permissive phase (where both approaches have a concurrent green light and must wait for gaps in opposing traffic to proceed), so it operates slightly worse than the other interchange alternatives, particularly in the 2040 PM peak. Alternative F would necessitate provision of lane separation out of Fordway as well as an exclusive EB right-turn lane to maintain an acceptable LOS.

\#7 - NH Routes 102/28

Based solely on the capacity calculations, this existing intersection would operate at acceptable LOS under all alternatives except Alternative F. As noted earlier, there are many other unquantifiable factors in the downtown area, such as pedestrian activity and friction from side street and on-street parking maneuvers, that contribute to reduced traffic speeds and the general diversion/avoidance of the area by through traffic to other routes such as Ash Street Extension, North High Street, Folsom Road, and Tsienneto Road.

The traffic model indicates that Alternative A appears to draw more traffic to the eastern part of downtown that then makes a right turn to NH Route 28 in the direction of Exit 4A and the Woodmont Commons development. In reality, much of this traffic may divert to the traffic circle to the east and use the Pinkerton/Tsienneto corridor to complete such a trip. Other Build alternatives show similar operational/LOS characteristics than under No-Build conditions. With additional traffic through the downtown area and no interchange option, Alternative F would necessitate provision of a second NB left-turn lane, an EB exclusive right-turn lane, and a second WB thru lane to maintain an acceptable LOS in the 2040 design horizon.

\#9A - Alternative A Connector Road/North High Street

This new intersection is created by the Alternative A connector road with the local street network. The existing intersection of North High Street with Madden Road would be relocated off the new connector road as a minor roadway serving the small number of residences there. It is envisioned that this new intersection would need to be signalized and widened to provide acceptable operations, given the projected traffic volumes. The Connector Road eastbound approach would consist of two thru lanes and an exclusive right-turn lane to North High Street. The Connector Road westbound approach would consist of an exclusive left-turn lane and two thru lanes. The North High Street northbound approach would
consist of two left-turn lanes and a right-turn lane. Given the projected volumes and this lane use, this intersection would operate at a LOS D in the 2040 PM peak hour.
\#10 - Alternative A Connector Road/Franklin Street/Franklin Street Extension This existing intersection is presently unsignalized and operates at a poor LOS for the north/south side street approaches, which experience difficulty entering the main traffic flow during peak periods. With the increase in development activity nearby, this condition would be exacerbated into the future to the point where there may need to be consideration of additional improvements to provide acceptable operations, even with other interchange alternatives beyond Alternative A.

With the Alternative A connector road in place, this intersection will require significant widening and signalization to provide sufficient lanes to handle the project volumes as a direct result of Exit 4A. The east/west approaches would have at least two thru lanes (the projections suggest a third lane may be needed for the eastbound approach) with exclusive left-turn lanes. The north/south approaches would have two lanes with an exclusive lane oriented to the west to handle the projected traffic. This configuration would operate at a LOS C in the 2040 PM peak hour.

\#11 - Ross' Corner (NH Route 28/Folsom Road/Tsienneto Road)

This intersection was upgraded several years ago to provide a second southbound left-turn lane from NH Route 28 onto Tsienneto Road to serve the predominant southbound-to-eastbound travel demand between I-93 and Derry and points to the east. With the projected growth to 2040, the existing lane geometry will no longer be sufficient to meet the expected traffic demands.

With an Exit 4A interchange in place, and with the Alternative A connector road in particular, the existing north-south traffic orientation now becomes an eastwest flow. As such, improvements to handle the increase east-west travel demand will be required. With Alternative A, a second EB left-turn lane and second EB thru lane will be needed, as well as a second WB thru lane, to provide an acceptable LOS. Alternatives B and C are on a new east-west alignment north of this intersection so no changes to the existing lane use are required. With Alternative D, the interchange is north of this intersection, so movements oriented in that direction will need to be augmented. This means the addition of a second EB left-turn lane and second WB right-turn lane at this location. Alternative F maintains the existing traffic distribution, and the existing lane use can accommodate the projected traffic volumes.

\#12 - Tsienneto Road/Pinkerton Street (Alternatives A and D only)

This intersection is in close proximity (300 feet $+/-$) from the Ross' Corner signal, but is not currently signalized. As such, left-turn exits experience lengthy delays while waiting for a gap in the Tsienneto Road traffic flow. The eastbound right-
turn movement has been separated from the main traffic stream by a channelizing island to help exiting traffic, but the opposing traffic flow limits the number of available gaps for exiting traffic. At some point in the future, regardless of this project, this intersection may need to be signalized and coordinated with the Ross' Corner signal, but there are no defined plans to do that at this time. Therefore, except for those alternatives that directly impact this intersection, namely Alternatives A and D, the intersection is assumed to remain unsignalized and is expected to operate at a poor LOS for the minor street approach from Pinkerton Street.

For Alternatives A and D, a second lane for thru traffic would be provided in both the eastbound and westbound directions, as well as an exclusive westbound leftturn lane into Pinkerton Street. With this geometry and coordinated phasing with Ross' Corner as a cluster intersection, this location would operate at an acceptable LOS C or better in the 2040 design year.

\#13 - NH Route 28/Linlew Drive

No changes to the existing lane use at this intersection are required to accommodate traffic volumes under any of the proposed alternatives.

\#14/22 - NH Route 28/Ashleigh Drive/Alternative B-C Connector Road

This intersection would see significant changes depending on which alternative would be in place. For Alternatives B and C, the proposed connector road would create a new east-west roadway that would require reconfiguration of lanes to accommodate the new distribution of traffic for either a southerly or northerly interchange. Under Alternative B, the new roadway would need two thru lanes in the east-west direction, as well as double-turn lanes to and from NH Route 28 to the south, along with other lane use changes. With Alternative C, a double SB left-turn lane into Ashleigh Drive would be needed to serve traffic from the new interchange to the north and the connector road, among other lane use changes. An acceptable LOS C or better can be provided for all alternatives with the appropriate revisions to the lane use.

\#18 - NH Route 28 Bypass/Tsienneto Road

The 2040 No-Build analysis shows that the existing intersection would operate at or over capacity during both peak hours, so some improvements would appear to be needed at some point in the future. Alternatives B and C reduce east-west traffic through this intersection, so the existing lane use can provide an acceptable LOS D or better in 2040. Alternatives A and D will require the addition of a second east-west thru lane to accommodate the increased east-west traffic at an acceptable LOS.
\#19/26- NH Route 102/Tsienneto Road/North Shore Road (Alternatives A-D) A review of the existing traffic counts at the North Shore Road and English Range Road intersections indicate that existing 2015 left-turn volumes currently satisfy turn-lane warrants at both locations. As such, any improvements at the Tsienneto

Road/NH Route 102 intersection associated with any of the alternatives should take this into consideration in the design.

Because existing PM peak analyses already indicate a poor LOS for exiting traffic, combined with the projected increase in left-turn volumes exiting Tsienneto Road, it has been assumed that this location will need to be signalized as part of any interchange alternative. Because of the proximity of North Shore Road, that intersection would be incorporated into the signalized intersection, similar to Ross' Corner and Pinkerton Street. An exclusive right-turn lane would be provided for NH Route 102 WB traffic entering Tsienneto Road, as well as a WB left-turn lane into North Shore Road. This left-turn lane would also be carried easterly towards the English Range Road intersection for continuity, where an EB left turn lane would be provided. There would still only be a single lane exiting Tsienneto Road, despite the higher volumes, because of the complexity of accommodating a double left-turn lane onto NH Route 102 and then tapering back to a single lane with North Shore Road being so close.

With signalization of the intersection as proposed, an acceptable LOS C or better can be provided for all interchange alternatives in the 2040 design horizon.

\#20/21 - Exit 4A SB and NB Ramp Terminals (Alternatives A-D)

With either a northerly or southerly interchange, it is envisioned that both ramp terminals would be signalized as part of the diamond configuration. The SB offramp would have two lanes exiting the ramp, while there would be two lanes provided for the left turn onto the SB on-ramp. This ramp would be close to capacity in the 2040 AM peak hour, assuming full realization of the traffic projections on the SB off-ramp.

At the NB ramps, there would be two east-west thru lanes with a single EB leftturn lane and double WB right-turn lanes onto the NB on-ramp. On the off-ramp, there would be a shared left/right lane and an exclusive right-turn lane, since there is no access to the west. An acceptable LOS D or better can be provided at this ramp terminal under all interchange alternatives.

\#23 - NH Route 28 Bypass/B-C Connector Road (Alternatives B and C)

This new intersection is created by the connector road roughly along the alignment of the existing Ashleigh Drive. With Alternative B, two east-west thru lanes need to be provided so that an acceptable LOS C can be achieved. Only one east-west thru lane is required with Alternative C because of less overall traffic volume through the intersection.

\#25-C-D Connector Road/NH Route 28 (Alternatives C-D)

This new intersection is created by the connector road from the northerly interchange where it would intersect with the existing two-lane section of NH Route 28 just north of the Derry/Londonderry town line. NH Route 28 southbound would become the minor approach to the intersection and would have
separate left- and right-turn lanes. The EB approach would have an exclusive left lane and two thru lanes, while the WB approach would have a thru lane and a shared thru/right lane. This configuration would provide a LOS B during the 2040 peak hours.

16. Unsignalized Intersections

A summary table showing a comparison of operations at each existing or proposed unsignalized intersection is provided in Table 12. In most cases, the existing or projected deficiencies for the minor street approaches are exacerbated, except where traffic diversions may reduce the volume of traffic on the major approach that would conflict with traffic turning from the minor street approach(es).

It is not envisioned that any of these intersections would warrant signals, except those that are directly impacted by a specific alternative, such as Tsienneto Road/Pinkerton Street or NH Route 102/Tsienneto Road/North Shore Road. Delays at the North High Street /Ash Street Extension and the North High Street/Folsom Road/Franklin Streets locations are excessive and should be monitored as the Woodmont Commons development progresses to determine if and when signal warrants may be satisfied.

Table 12 Summary of 2040 Capacity Analyses by Alternative Unsignalized Intersections								Comments/ Lane Use Revisions
Intersection		AM Peak Hour			PM Peak Hour			
	2040 Alternative	v/c ratio	Average Delay	LOS	v/c ratio	Average Delay	LOS	
$\begin{aligned} & \hline \text { \#8 - N High St/Ash St Ext } \\ & \text { (Critical Movement - EB LT) } \end{aligned}$	No-Build	1.04	78.0	F	3.04	>300	F	
	Alternative A	0.53	17.4	C	1.47	228.8	F	
	Alternative B	0.42	14.3	B	0.96	56.5	F	
	Alternative C	0.76	29.3	D	1.09	90.6	F	
	Alternative D	0.74	25.7	D	1.70	>300	F	
	Alternative F	0.74	27.1	D	1.79	>300	F	
\#10-N High/Folsom/Franklin Sts. (Critical Movement varies between NB and SB)	No-Build	0.20	21.8	C	0.55	82.0	F	NB all is critical
	Alternative A		n /a/			$\mathrm{n} / \mathrm{a} /$		Signalized
	Alternative B	0.94	96.5	F	3.00+	>300*	F	NB all is critical
	Alternative C	1.35	219.6	F	3.31	>300*	F	SB all is critical
	Alternative D	0.22	10.9	B	1.21	160.2	F	
	Alternative F	0.36	31.7	D	2.31	>300	F	NB critical in AM, SB critical in PM
\#12 -Tsienneto Rd/Pinkerton St (Critical Movement - NW LT)	No-Build Alternative A	0.25	$\begin{aligned} & 16.1 \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	C		$\begin{gathered} 84.0 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	F	Signalized
	Alternative B	0.89	80.0	F	1.00	126.4	F	
	Alternative C	2.04	>300*	F	2.54	>300*	F	
	Alternative D		n/a/			n/a/		Signalized
	Alternative F	0.65	66.1	F	4.10	>300	F	
\#15-NH 28/Scobie Pond Rd (Critical Movement - SB all)	No-Build	1.01	144.7	F	0.58	32.2	D	
	Alternative A	0.18	14.4	B	0.19	16.4	C	
	Alternative B	0.18	13.3	B	0.23	16.5	C	
	Alternative C	0.67	>300*	F	4.44	>300*	F	
	Alternative D	1.34	>300*	F	6.67	4259.8*	F	
	Alternative F	0.31	27.4	D	0.47	51.0	F	
\#16 - NH 102/NH Byp 28/E Derry Rd (Traffic Circle-RT only) (HCM 2010) (Critical Movement - E Derry Rd)	No-Build	0.87	31.9	D	1.26	151.2	F	
	Alternative A	1.11	94.0	F	0.92	41.9	E	
	Alternative B	0.77	21.4	C	0.68	16.4	C	
	Alternative C	0.73	18.8	C	0.78	21.7	C	
	Alternative D	0.84	28.3	D	0.89	33.6	D	
	Alternative F	0.91	40.1	E	1.21	128.7	F	
\#17-NH Byp 28/Pinkerton/Nesmith (HCM 2010) (Critical Movement - WB all)	No-Build	-	\%	F	.	-	F	Left turns from Nesmith
	Alternative A	1.01	138.9	F	0.52	55.3	F	
	Alternative B	1.13	188.1	F	0.53	57.3	F	
	Alternative C	0.96	127.6	F	0.41	41.7	E	
	Alternative D	1.35	280.7	F	0.63	78.3	F	
	Alternative F	0.45	26.2	D	0.46	49.1	E	
\#24-B/C Connector Rd/Tsienneto Road (Critical Movement - NB LT)	No-Build		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$	-	Does not exist
	Alternative A		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$	-	Does not exist
	Alternative B	0.09	38.9	E	0.00	0.0	A	
	Alternative C	0.00	0.0	A	0.00	0.0	A	
	Alternative D		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$	-	Does not exist
	Alternative F							Does not exist

Table 12 (Cont'd) Summary of 2040 Capacity Analyses by Alternative Unsignalized Intersections								
Intersection	2040 Alternative	AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
		v/c ratio	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#27-NH 102/English Range Road (Critical Movement - SEB all)	No-Build		n/a/			n/a/	-	
	Alternative A	0.17	20.8	C	0.16	28.4	D	
	Alternative B	0.23	24.5	C	0.22	26.1	D	
	Alternative C	0.17	20.8	C	0.23	42.1	E	
	Alternative D	0.17	21.0	C	0.18	32.8	D	
	Alternative F	0.17	20.8	C	0.16	28.4	D	

17. Findings and Conclusions

The results of the traffic modeling for the Project indicates that the provision of a new interchange on I-93 will provide varying levels of traffic relief to NH Route 102 east of Exit 4 and into the downtown Derry area by the 2040 design year, as shown in Table 7.

Examples on key links include:

- NH Route 102 east of Exit 4: In the 2040 No-Build case, there is projected to be $41,725 \mathrm{vpd}$ on this segment. Alternative A provides the most relief on this segment (-51.5%) to a volume of 20,240 vpd, which is the same magnitude as the 2015 base volume. Alternative B shows a 48% reduction, while Alternatives C and D show lesser reductions. Alternative F shows a slight increase in projected traffic than any interchange alternative.
- NH Route 102 east of Griffin Street (downtown): Alternatives A, B and C show similar reductions, on the order of $19-21 \%$, or $3000-4000$ vpd, over 2040 NoBuild conditions. Alternative D shows a lesser reduction, but still lower volume than the 2015 base. Alternative F projects higher volumes than any interchange alternative and would be higher than either the 2015 or 2040 No-Build case.
- Volumes on the Exit 4 ramps are lower under most interchange alternatives, with Alternative A providing the most overall relief over No-Build conditions, even under the highest potential development scenario for the Woodmont Commons development.
- Volumes on the Exit 5 ramps see the highest traffic reductions under Alternatives C and D (northerly interchange) than under a southerly interchange scenario.

Mainline freeway facilities operational analyses indicates that the four-lane I-93 mainline will function at an acceptable LOS C or better under all scenarios, with a couple of exceptions where two-lane on- or off-ramps may be needed to accommodate all projected volumes. A sensitivity analyses of the Exit 4A SB off-ramp indicated that a 200 -vph reduction in the assigned traffic would allow this ramp to function as a single lane offramp if these traffic projections are not fully realized.

The Exit 4 ramps would have slightly higher volumes under either Alternatives A or B, but this is more reflective of the higher potential development scenario assumed for the Woodmont Commons development than for Alternatives C, D or F, which use the same scenario as the No-Build condition. As noted earlier, should the 23% internal capture rate for Woodmont Commons trips be realized in some form, the number of trips assigned to the study area network may be reduced accordingly, which should result in better traffic operations than the worse-case scenario assumed in this study.

The level of intersection improvements needed to accommodate the alternative and connector road corridors vary greatly depending on alternative. In general, all intersections can provide an acceptable LOS under any alternative with appropriate lane use and signalization/coordination as required. The traffic circle at NH Route 102/NH Route 28 Bypass will continue to function at a poor LOS regardless of alternative.

In summary, from a purely traffic standpoint, Alternatives A appears to best satisfy the Purpose and Need for the Project by providing the greatest reductions in NH Route 102 traffic through downtown Derry than the other alternatives evaluated. Volumes on NH Route 102 just east of Exit 4 would be roughly half of 2040 No-Build levels and similar to existing (2015) conditions. Alternative B provides some relief as well, but primarily serves a north-south trip pattern as opposed to the east-west pattern needed to reduce traffic on NH 102 in downtown Derry. Alternatives C and D would provide some, but not as much, relief to the NH Route 102 corridor, because of the increased distance between these northerly interchange alternatives and the NH Route 102 corridor.

Other natural and cultural resource impact criteria will be used to provide the final assessment of the Preferred Alternative, but the previous finding of Alternative A as the Preferred Alternative from a traffic standpoint is supported by the updated analyses contained herein.

18. References

AASHTO (American Association of State Highway Transportation Officials). 2011. Policy on Geometric Design of Highways and Streets. American Association of State Highway Transportation Officials. Washington DC, 2011.

CLD, 2018, Traffic Technical Memo, Estimate of Contribution of Woodmont Commons Traffic to Exits 4 and 4A, February 5, 2018

CLD|Fuss \& O’Neill, 2018, Minutes from Traffic Working Group/EIS Review Team meeting, February 20, 2018

FHWA. 2007. I-93 Exit 4A Interchange Study Derry-Londonderry Draft Environmental Impact Statement. July 2007.

Google 2018, Google Inc. Google Maps, Accessed January, 2018
Louis Berger. 2017. Land Use Scenarios Technical Report.
Louis Berger, 2018, Interstate Justification Report, April, 2018
McTrans, 2018. McTrans Center, University of Florida, Highway Capacity Software (HCS), Version 6.90, 2018,

NHDOT, 2009, Supplemental Environmental Impact Statement and Reevaluation/Section 4(f) Evaluation, August 2009, Tables 4-12 and 4-13.

NHDOT. 2016a. Bureau of Traffic, Traffic Reports.
https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/i-93.pdf.
NHDOT. 2016b. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/nh-28.pdf.

NHDOT. 2016c. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/nh-102.pdf.

NHDOT, 2016d. Bureau of Traffic, Seasonal Adjustment Factor report, 2015
NHDOT, 2016e. Email from John Butler (NHDOT) to CLD, dated November 7, 2016
NHDOT, 2016f. Email from John Butler (NHDOT) to CLD, dated July 21, 2016
NHDOT. 2017a. Email from John Butler (NHDOT) to CLD, dated May 25, 2017
NHDOT. 2017b. Email from John Butler (NHDOT) to CLD, dated March 8, 2017
NHDOT. 2017c. Email from Nick Sanders (NHDOT) to CLD, dated October 12, 2017

NHDOT. 2017d. Email from John Butler (NHDOT) to CLD, dated June 20, 2017
NHDOT. 2018. FY 2018 - FY 2028 Ten Year Plan. Available at:
https://www.nh.gov/dot/org/projectdevelopment/planning/typ/documents/20180116-10-year-transportation-recommendations.pdf.

SNHPC. 2017. FY 2017 - FY 2040 Regional Transportation Plan for the Southern New Hampshire Planning Commission. Available at:
http://www.snhpc.org/pdf/FinalRegionalTransportationPlan2017-2040.pdf.
TEC, 2013. Woodmont Commons Planned Unit Development, A Master Plan, Section 4.2
Master Plan Traffic Impact Assessment - Supplemental Documents, Sept. 2013.
Texas A\&M, 2017. Transportation Planning Implications of Automated/Connected Vehicles on Texas Highways, April 2017.

Town of Derry, 2015. Town Zoning Map, effective 8/6/2015
Trafficware 2016. Trafficware, LLC, Sugarland TX, Synchro plus Sim-Traffic. Version 9, 19982016

Transportation Research Board (TRB), 2000. Highway Capacity Manual, 2000
Transportation Research Board (TRB), 2010. Highway Capacity Manual, 2010
Transportation Research Board (TRB), 2016. Highway Capacity Manual (HCM6), 2016, Chapter
22, Roundabouts

Figure 3 - I-93 Exit 4A Supplemental Draft EIS - Zones 1-6 Locus Map

Figure 4-2015 No-Build AM Peak Hour Base Volumes - Locations 1-4

Figure 5-2015 No-Build PM Peak Hour Base Volumes - Locations 1-4

FIGURE 8 - VOLUME COMPARISONS - EXIT 4 RAMPS

FIGURE 9 - VOLUME COMPARISONS - EXIT 5 RAMPS

FIGURE 10- VOLUME COMPARISONS - EXIT 4A RAMPS

Exit 4A SB Off-Ramp

Exit 4A NB On-Ramp

Exit 4A SB-On-Ramp

FIGURE 11 - VOLUME COMPARISONS - NH ROUTE 102 CORRIDOR

FIGURE 12- VOLUME COMPARISONS- OTHER LOCAL STREETS

Tsienneto Rd, West of NH 102

Figure 15-2040 No-Build AM Peak Hour Base Volumes - Locations 1-4

Figure 18-2040 Alternative A PM Peak Hour Base Volumes - Locations 1-4 and 20-21

Figure 25-2040 Alternative F AM Peak Hour Base Volumes - Locations 1-4

Figure 26-2040 Alternative F PM Peak Hour Base Volumes - Locations 1-4

Figure 31-2040 Alternative B AM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27

Figure 32-2040 Alternative B PM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27

Figure 34-2040 Alternative C PM Peak Hour Base Volumes - Locations 5-19 and 22-27

Figure 37-2040 Alternative F AM Peak Hour Base Volumes - Locations 5-19 and 26-27

Figure 38-2040 Alternative F PM Peak Hour Base Volumes - Locations 5-19 and 26-27

APPENDIX A: TRAFFIC COUNT DATA

NHDOT PERMANENT RECORDER COUNTS－ 1935 OF EXIT 4 －MAY 2016

489003
WINEHAS！

M	DV	D	Hi	和	H3	329	H5	He	17	78 种	H9	H 10	H13	＋12	H13	H14	$\mathrm{H}_{3} \mathrm{~S}$	\％15	H17	5－b Pat	Hi9	H 2 C	H2t	H22	＋23	$\mathrm{H}_{2} \mathrm{C}$	txitos
5.	1		551	37	2 S	359	158	S 9 E	359	H3：	：171	13 F	${ }_{5}^{5} 82$	219，	2355	7867	2159	2245	22a？	2 ab ］	1317	14 Ses	1103	唇	575	$4{ }^{4} 5$	zers
6	6 ${ }^{6}$		376	3，${ }^{\text {a }}$	12，${ }^{\text {a }}$	122	13	355	335	F1］	909	142，	298	2313	231	2404	238． 4	2501	2453	7351	23 3	terat	7462	9 OE	tal		31743
5	2		$4{ }^{4}$	238	147	126	2 E 2	¢35	\＄3971	7294	1813	1542	t623）		ifay	1359	$2{ }^{2}$	26EG	3376	\％	20：3］	1568	PES	何	629	$44^{4} 6$	35150
5.	5		280	35：	151	182	理7	\％ C	2478	2289	＋979	15 C	1523	138	18：3	1541	2453	32 Ea	354	3 bts	$2{ }^{2}$	1714	634	9 h 2	iss	541	35733
si	3		203	382	134	${ }^{181}$	327	Eig	14.2	2192	1928	150 ${ }^{\text {a }}$	15：2	3656	1326	： 911	2 cic	3249	3 m 02	3591	2575	172		1850	682	ses	36593
5	10		3.3	浱	179	159	24	659		2292	193	1705	1724	TE8t	$17 \leq 5$	：51	：615	$33: 5$	$3 / 9 \mathrm{SE}$	8599	273	1 E5	13 S	1056	72	201	
5	4		2 Es	19	退 ${ }^{\text {a }}$	15	278	foy	14 ¢4，	2251	1953	1559	13 T	193	1800	9952］	23 2	3329	3 H		2727	1221		1：78	674	5,24	37213
，	5		$\underline{352}$	205	$1{ }^{12}$	15	2E3	¢！	13， 37	270	19	1204	182.5	7805	18.6	4.453	30，	3254，	3\％	3	I？ 3 ，	2119	1288	$13 \mathrm{E}=$	${ }^{655}$	527	33142
2	C	8	3931	2＊	17	16F．	350	辰近	44：8，	289	1919	1 E 5 F	16.2	2178	2 zez	254	3228		313	3.365	3ixa	235	3573	：M13	514		48492
31	－		4761	239	4	451	185	351	\％	121s	19，4	2993	5as	3－55	2684	23］	7681	2544	25st	2303	86	1790	${ }^{3} \mathrm{SH}$	：331	2331 ${ }^{\text {\％}}$	753	31065

Mim	Or	D	Hi	H2	13	144	H15	H6	H7	7－8 AM	H＇	H20	Bis	H32	H13	H：4	${ }^{1} 19$	${ }^{\mathrm{H} 15}$	$\mathrm{H}_{3} 7$	S－5 PM	Hig	120	से2	$\mathrm{Hi} 22^{2}$	123	H2¢ ${ }^{\text {a }}$	9xteial
3			30 ${ }^{\text {S }}$	245	155	3 l	17	35	535	917	5742	159］	279	［2］ 3	27.6	76＊${ }^{2}$	动析	720	7148	7806	189，	4375	1987	748	415	$7{ }^{2}$	32－2，
．	：		3，${ }^{4}$	$2: 0$	$13!$	18	1231	32.	54	B19	1010	1932	7745	3623	3201	2335	2809	2 E 兂	${ }_{8} 824$	2333	\％	1726	12．51	92 ？	为菫	2 EE	3532 ${ }^{\text {a }}$
－			15	133	18	259	3129	2m？	Sant	3645	367	2355	554	185	7734	1Es？	${ }_{\text {ETES }}$	iEab	2027	2203	1385	322	74i4	$\mathrm{EzS}^{\text {a }}$	428	25	5072
5	9		124	7154	155	28；	2，的	754	3 A		29	$27 n$	［75	1187	\％ 29	1613	3969	2！（c）	22×8	$2 \pm .11$ ！	15.8	10？9	62	6 Eb	4s：	24.	37 371：
5	，		173 ！	515	1：11	20.5	\％18	2535	3265	3135	327at	2233	1753	1932	1730	1551	1930	2¢ 59	2178	2464	ticil	：124	9.21	kes	49	（s）	36．29
－	＋		165	333	16	2 m	T03	2735	3373	2656	312	23se	673：	1？ 35	17 E ¢ ${ }^{\text {a }}$	379	1994	$2 \mathrm{ze7i}$	2118	3739	1558	1223	8fet	7 m	존	273	352
5	4		2 mb	135	153	255	1025	3735	335	\＄ 6.51	3 c	2285	173	375	17\＄5	77 B	1998	2184	1732	273		1358	261	33	295	32	3725
S	3		131	143	171	2 as	973		3133	310	3 zes	8 ys	12.3	3942	1364	\％90\％	3254	2744	2132	2523	4585	1276	933	56	551	12 S	3756，
5	5		221	H29	2tic	281	O5S	2ase	314．0．	3329	2735	22011	1339	293	2097	2358	2356		2856	2217	zat	145 Ec	t0］	tact	［31	232	$45^{3} 38$
S	？］		253	17	533	161 ！	319	r 3 3	114	\％48，	1 min	7115	2335	25 \％	3551	2400	755		27ed	2553	2165	1659		102	1ff	265	WFF3E－1

ADESU	2156	1577	1696	2389	7684	19802	24804	26418	25547	21999	13437	21303	21017	20342	22257	23353	23590	24855	17553	133034	2989	8425	5684	3147367162
ADT	2：6	158	264	259	768	2960	2480	2642	2555	2 za	1943	1130	2102	2035	2225	2335	2367	2487	1755	1369	999	803	548	315 36736
AWDT－si	1261	947	1217	1919	3074	15226	72533	23249	21229	1618	12 n 4	12438	12508	12127	24831	15776	154.19	17583	15445	81，5	634\％	5367	3542	2059268952
Anct	190	135	134	274	101！	2601	3236	3321	3015	2354	1721	3848	3797	1732	2033	T182	2203	2512	1635	1162	907	764	520	293.375

Nes 3 se	H1	θ	H3	file	B	碞	4	2－848	\％${ }^{19}$	Hio	Sis：	Hiz	H13	H：C	HES	Hiss	H；	5.8 Pm	H：S	H：70	H2：	H12 2	3 ${ }^{3}$	12	mitatal
$5{ }^{\circ}$		381	\cdots	1 m	159	退	3 n	im	120	1：1：	1em］	132	n12	43	Qu	29	at	A	cod	1.9	19\％	\pm	ts	5 S	Stsis
5%	$\stackrel{4}{ }$	3	${ }^{2}$	，91	13	13	sur	3	： 1	31	195	4	$\underline{1}$	101	m	211	3	［14	A	等	11×1	120	$i=1$	tor	3540
517	ses	3 c	sif	13	$1{ }^{14}$	$1 \pm$	431	ser	$1:$	1×1	1 N	mi		4	Se	Sc_{4}	29，	（2s）	12w	10 \％	1 12	1 Ba	rer	4 P	－7\％1
5.4	S	2	te	\％	，	完	3	樶	m	3 m	213	3 3 ：	0 m	mc	超	S－3	\％	\％	129	1512	131	\cdots	\＃1－	2	$\underline{\sim}$
33	䞨	415	H	13	1	1	3 P	sin	k4	1 B 왈	3 Si	1	180，	1	1008：	$1 \geqslant 3$ ；	4	1020	3，	1252	20	tis	：	至：	\％
$\stackrel{2}{ }$	Les	4	\％ 2 ］	θ	\cdots	3 m	s	Lee	H2	－	ver	Se		$7{ }^{2}$	cel	d	［ $\times 2 \cdot$	2－1	1204	盛：	T3st	3	\＄1	\pm	H1，
$\stackrel{9}{4}$	号：	29	4	\％	13 ）	N	51	E＋1	23		사아	Noid	（1）E	为	0	3 3	隹	＜	60	10	0	\％in	sid	g	3 3ist
$5{ }^{5}$	3	R 2	2	S	暆	N	$1{ }^{1}$	14	： $2 \times$	4．4	均	\％ 3	空	\bigcirc	地	ssy	crat	13	5－10	18 ct	S	123	14	1	د20
52	15	3	嗡	4	3：	是	int	13	2	ck	15s	20.	4	3 m	nse	St	（xil	स2if	，	：3i	M	trat	$13+1$	3	tar
± 351	\cdots	13	C	2	4	2	4	12 sf	15×1	103	32	2）	48	20．	3	2 m	\％ 31	204	301	394	uej	Hest	12 k \％	，${ }^{4}$	
	3.4	\cdots	13	2	T19	E	332	S	\％	12in	1015	1 SH	＋2	－21）	311	3 Em		itif	为	\cdots	We9	312	5	\pm	athinselat
5	S	S		明	等	S	12	\％	1	14	129	15.1	H2	4 4	3	Ssis	3	3920	（12）	－	119．	5	mep	Ld	1，
； 1	－	Ve	14	13	xil	3n：	\％	\％	स	12，	1520	1504	1	4	2il	x2c	ख1	N01	24	\cdots	1019	3	E19	± 1	j2min
51 E	5	＋0－	57	w	s	\pm	36	24	N0．	w	16	Tret	＋14	：$\times 1$	4x	20．	3 SL	± 1	㘩	To＇，	119	怱	1	31	104920
≤ 5	2 m	Ai	S	12	＋	\％	S	10	191	5	15iv．	uy	1 L	［12］！	216	袻	mat	9	and	1 ± 1	$1{ }^{18}$	327	H7	Ex	景
$5{ }_{5}^{5}$	4	2.	\％	131	2	Sel	210］	x 1	\＃	3	迷	M1	194	Br	\cdots	4	गEx	313	xili		121．	M	re．	\％	\％om
5 ± 3	129	3	Lef	4	H	991	174	ms	4xs）	88：	17909	139	13 l	im	20el	23	312	4	210	ved	1020	\％	$\underline{0}$	tes	
≤ 76	s	$1{ }^{10}$	：	5	St	± 1	L	衳	乐	絧	Ps	110	1×2	1	3	222	趗	241	㫛：	nme	13018	\cdots	S	S	18
$5{ }_{5}$	＂1	尔	\％	纤	1	1\％	1 1－5	1 m	\％	\％	5	$3 \mathrm{sm}=$	919	Nes	H14	smi	3sy	\％｜	mel	\％	家曻	H10		5	n．
≤ 13	2	\％	13 ！	\％	4	3	1519	品等	18 c	24	$1+$	\cdots	\％	We：	33n｜	m－	31i	$\underline{4}$	采稢	吅	Hust	\％at	55	un	2
≤ 2	580	1	1.4	13	\cdots	织	120	200\％	238	，${ }^{\text {a }}$	12\％：	$\underline{85}$	Itt	12 e	2 Ns	5		2 H	2eis	2141	1282	18 j	cis	尘	jem
$=3$	4	2	1	，	9	313	318	T	20］	189	52x	13	105	134	M	294	Jef	H2	2	121	12：	180	Etal	，	Hid
${ }^{3} \mathrm{~F}$	\％	为	：	1	，	8	5	S	Ses，	13	\cdots	1450		趈	\％	323	H：	2 ms ｜	PM	व1	1 m	120	$\underline{4}$	\％	drom
$\begin{array}{llll}5 & 14 & 3 \\ 5 & 7 & 3\end{array}$	4	沓	\％	${ }^{4}$	$7{ }^{2}$	3	519	［85	，	4	st	\cdots	311	2 E	（1）	304	32，	509	comi	4	5	\％	32：	t	32w
5723	${ }_{6}$	A	rm	15	，${ }^{1}$	24	120］	－1	M	昭	ts	$18 \pm$	xu1	chit	raid	2	20．	3120	1	$1 \times$	，	sed	yed	12	Bx
53	3，	C	圽	16	4	31	14	\cdots	\％sis	1 H	102	4	1920	m	2459	\cdots	2180	3s	11919	N	win	11.2	功 2	S 4	：
± 15	3	2	3	12	nos	201	IT＝	182．	13＞1	128	1532	204	去城	24	2919	132	\％	楽	： 21	去：	Lesi	14	\％	st	\cdots
${ }^{3}$ 5 5	43：	A99	1		π	2	＇6	2010	1980	1	1.202	\％	02	Ts	nes	1 mP	301	H\％	＋	Y 4	139	2 tug	14	tsit	stis
\％ 138						\％ 4		N20	nse	$16+1$	139	CESE，	2	en	3\％	42	193	坔，	50 c	cist	125	120	12.	$0 \times$	ceses
5 It		N2	Lex		成	3 ${ }^{2}$	Ex2	Msi	0	？	＋\times \％	（the		3th	3	3rn	2019	3ter	暒	pise		1\％n	T／is	4	R15\％
					\％		20，	Sx	N	Sel	12．	2 LE	2teri	${ }^{2} \times$	smil	3elt	231	2xec	잔	Rep．	12910	1	18 遂	sel	11930

mis or ${ }^{\text {a }}$	Hi	Hz^{2}	H	H2	든	緼	41）	78 AM	H ${ }^{\text {S }}$	\＄19	34：	H22	His	H12	bis	＋136	mi	5.5 Pm	1：9	$\mathrm{H}_{2} \mathrm{~s}$	H21	H2］	H73	H24	sxtodi
3 F	± 1	3 s	1 m	1.1	－	\％ 7	515	家	Hext	13	500	4	N：S	5	129	ast	nim	As／	2，	10，	3n9	篤	w	20．4	－
≤ 121	37	213	12	S	$1{ }^{\text {a }}$	sm	201	H^{2}	隹角		Hes．	3 m	10	r3＞	cta	2Feco	208	\％	安速	ver	Ste	03	\pm	4	Rater
－ 19	4	ne：	4	1 18，	边	S	3	E15	125	1 12	21m	［19	mid	sor	\％	\％	Anc	N40	20%	38.	5 5	$4{ }^{4}$	\cdots	，	W，
≤ 21	n	s	1×1	採	14	2 l	≤ 15	0	و15	1848	mi	S	4×1	N：－	区䢕	219	\％ 46	fist	10x	0	㫛	\＃13	591	L11	3，
$5 \geqslant$	18	23	1	11	H1	组	\pm	ra	318）	200：	115	21	$3{ }^{3}$		n－	Siv	z：37	23i	㫛	\％	S22	Et	妆	5	3
$5{ }_{5}{ }^{5}$ ，	战	S	12	1 F	2	Dis	9	1%	1ee	［stelf	N	家	4 A	2m．	2xt	23	20x	\％	12 m	Sme	＋19	S14	23	2	29.
\％\％，	xins	$\underline{4}$	n	$1 \times$	3	tes^{1}	4，3	12	1bes．	\％	211	143	212	2 SO	分耍	m	为	\＄409	170	，	58	133	5 S ！	\pm	5
5 18，	， 1	，	些	1	会	sed	\％	18	13	Sss	7\％	क 4 12		\％	32］		2：1	2 m	3×1	［4］	129	12 t	m	2	\％
5 2，	2	－0，	\％	1	4	4	E	：	\％	3 y ：	201	yect	（1）	\％	104	1 TH	2	20＊	5 Ec	4	3	$1290{ }^{1}$	get	22	$1!9$
\leq \％	3 t	\％	\％${ }^{\text {che }}$	H	\because	\％	5	$2 \times$	1 2	139	\％	＋12	1131	心1	4	3 y	2020	4 ta	：$* \times 1$	－ 4×1	1 H	S	tit	$0 \cdot 1$	1 ssex
5 bis	rss	吹	sisf	S	1 m	321	38.	1	：	3 S	11nt	\％	1813	Erra	ar	，	\％	3\％	231	4	｜im	1H：	E2：	$\underline{5}$	may mine
547	134	11	1）	\ldots	x	245	100	3x1	נ	［4］	1×2	13 l	12，	W	Pay	盛	1090	A	Sas	5	3：2	mid	29	ICS	1208
538	12	115	2 2	A	ts：	去 5 ¢	\cdots 碞	12xt	गtig	ser	19%	120	12	18.1	\％rei	m	15920	3431	5	－	53	2，$=1$	311	2	Lind
$5{ }_{5}{ }_{5}{ }^{5}$	， H_{2}	13	1	x	\＃	2×1	31.	यuia	1111	2 m	15＊	［2］${ }^{\text {a }}$	14	14	Wh	14	\％	यer	320	152	时	19	3 －	$1{ }^{18}$	30es
$5: 3$	St	${ }_{163}$	\％	20，f	\％	w	3：31	sas	3 Jg 9	25	3 mm	178）	Lsi	17 col	48	\％ 1	\％ 4	4	rax^{3}	14	\＄	0	4	2\％	were
53	5	1	\％	4	\％	26s	148	160：	3198	im	H1	12 a	19	164	120，	\％	2tes	121	2 1	1001	217	W	6 3	smi	Hese
5 5	， 6	12	域	12	${ }^{4}$	$1{ }^{21}$	$3 \geqslant 3$	19	18989	141	\pm	1	137	ref	13，${ }^{\text {a }}$ ，	－	M1si	䢒	1251	19	EEL	［2］	3	3	15
5					\pm	$6{ }^{6}$	22，	Prs	12	4x	1s00	$x \leq 1$	18 －	129	2129	$0 \rightarrow 1$	1 l	$4{ }^{4}$	$1 / 40$	140	54	\％	2 m	3	jer
$5{ }_{5}^{5}$	${ }^{\text {Hex }}$	19	1	m	${ }^{2}$	3 mac	5	边	， 21	明	min	nse		12 s	1920	A12	（2a）	S2		$1{ }^{1}+8$	18	5	Eir	3	2
	㫛	18，	碞	2s，	Ext	6 6	3its	11／4	$2{ }^{2}$		迷	35x｜	1\％	17		cast	2ne		$1 / 4$	1 mol	wer	ET	， 3	3	3ner
	18	sis	12	\triangle	5	$3{ }^{3}$	5：5	36	32es	34	：3	，m	9，	19	$\underline{10+1}$		20er	乒	10 crs	ret	3 m	Q：	\％	，	品
5%	13 T	$\underline{3}$	13	cs	0	掦	2ma	sex	$2{ }^{4}$	249	\pm	15：2	4	08	\％	20¢	24－1	251	iies	S	W	5 ${ }^{2}$	58	3	sis
5%	20	29	1	\％	书	\％	\％	1＊4	3 31	at	－821	29，	Lex	， Sa_{5}	2 l	2309	ise	ist	2	Sem	？al	\＃： 4	Se：	Hes	9
$\begin{array}{llll}5 & 14 & 5 \\ 4 & 71 & 5 \\ 4\end{array}$	\％	reil	19	3	0	3	3112	－	sce，	i	1.45		5	sir	319		2 cos	采	等	cin	42	rsid	＝1	3）	3wn
	．		\％	＊	th	A\％	210，	50940，	18219	N	cas	1291	Stas	201	Hed	2 m	23	394	Sis	2r1	，	31	18	dr）	Hese
5 ， 5		：	景		盛	An	1123	3040	2 mit	0	1407	190｜	183：	4		2 Sc	A	\cdots	1	H20	104	Eses	Erct	迷	\％ext
$5 \mathrm{E}=$	Ss：	4	m	\％1	二小	A10	\％	120	10t	2108	20	mel	1×0	\％	${ }_{\text {cose }}$	，	2018	211	迷	ist	129	108	¢ $\times 1$	2난	xomit
3 ＊3 5	Heg	13	1－1．	29	tis	201］	2	2n：	3：4，	181	212	ET0	Cosi	\％ Cl	cs：	491	del	me？		tis）	sis	w	is	54	tath
522 E	n	1	M	4	穴	31	3	318	8 m	Sis	230	1935	13	ab	7n	3 m	Lest	\％	174	13：	1×4	uct	St	a	8 8 \％
$* 2$	A	\％	－ss．	，is	Ext	43F	盛	3 Sa	381	\＄01	$\underline{n c c}$	3591	394	＋	20，	zesi	zei	201	अस	139：3	1	－ 1	53	\＄	$\pm \pm$

STATE OF NEN HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BEREAL OF TRAFFIC
IN COOPERATION WITH US DEPAETHENT OF TRANSDORTATON FEDERAS HGAWAY AOMANSTRATION
AUTOAATIC TRAFFIC RECORDER DATA FOR THE AONTH OF MAY 2016

81269107 LONDONDERRY-I-93 NE OFF RAMP EXIT 4

E		$12 \mathrm{Am} \mathrm{B}^{3}$	1 AiM	2 A A	3 mm	4 AM	5 Abs	6 AM	7 A ${ }^{\text {a }}$	8 A M	5 A	10 Am	19 AM	柆 P阿	$1{ }^{1} \mathrm{PG}$) 7 Pr	3 PR	$\triangle \mathrm{PM}$	5 PR	6PM	7 M	B PM	¢ PM	10 PM	$1)^{1} \mathrm{Pht}$	
E	1	¢	337	54	35	26	25	97	1091	232	339	480]	5 5)	767	$7{ }^{7} 5$	631	676	760]	672	6531	509	405	272]	348	323	8 B 71
3	3	rof	45	44	3 B	45	17	7421	472	467	423.	4 CE	47 F	492	334	815		13305	1478	1056	615	460	3241	210	175	11288
4	4	31.	59	49	34	41	106	269	44.2	475	391	453	552	559	573	63?	7,0	5201	1778	1040	672	480	3e7	EYC	594,	4133
5	5	122	52	50	43	54	90	236	435	496	4 ES	454	398	569	419	915	$\underset{1}{1076}$	+1929	1828	1824	725	474	359	244	1B6	1718:
E	6	122	21	465	41	03	109	254	491	45	405	459	562	587	667	901	+1060	1793	1708	9:3	653	431	392	354	299	1:1433
7	7.	1501	17]	693	42	31	61	138	235	451	644	593	6 d	754	515	857	791	795	EES	627	521	4 Et	369	291	246 \}	19518

STATE OF NEW HANPSHIRE, DEPARTMENT OE TRANSPORTATION ~ BUREAL OF TRAFFIC
EN COOPERATION WATHUS DEPARTMENT OF TYANSFORTATION FEDERAL HGHWAY ADMNSTRATOR
LONDONDERYMATIC TRAFFFC RECORDER DATA FOR THE MONTH OF MAY 2015
 LONDONDERRY-1-93 NB ON RAMP EXIT 4
; ${ }^{\mathrm{E}}$;
5 - 3

5	5	5

$=7$
Sum Anet ANDF

22af	185	2Ant	3 AM	4 AM	5 A ${ }^{\text {a }}$	E AlM	7 AM	BAEs	9 Ap	10 A A 5	fif Am	12PM	- Ps	3 PM	3 P P	4 P \%	5pm	¢ $\mathrm{P}_{\text {P }}$	7 Pm	日 $\mathrm{P}^{\text {M }}$	P PM	to pm	11	
72	5	35	301	25 5	59	977	194	2741	438	603	Ex	657	59	639	5 S	3 36	4391	42	377	303	233	\% 13	7.	7478
17	30	3	36	83	224	693	1091	855	610	559	542	5 S 3	595	6 CO	E30)		729	69	4 21	305	2231	432	88	
42	76	19	42	75	235	298	2175	B77	5is	56.5	655	619	617	692	79	782	773	572	43 E	329	2 C	145	74	76976
30	26	31	35	Fe,	238	69	EGE	865	69\%	593	618	759	654	753	871	938i	895	633	433	332	252	167	85	11732
49	37	40	42	62	237	E69,	: 643	839	650	615	625	783	688	856	545	876.	859	627	455	377	256	223	+34	
B0,	54	43	40	42	6?	2001	341	50	509	E41	733	373	740 ,	715	7\%	6.41	5551	502	413	338	373	225	¢53!	9392

STATE OF NEW HAMPSTHRE，DEPARTMENT OF TRANSPORTATION－RUREAIU OF TRAFFIC
N COOPERATION WITH U．S．DEPARTMENT OF TRANSPORTATIGN FEDERAL HGHWAY ADAIINISTRATION AJTONATC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016

			12 AM	1 AM	2 Am	3 Aln	4 Asi	5 A	\％And	7 AMS	BAM	924	İAM	$11 / \mathrm{AM}$	12 FM	号啉	2 P	3 P1	4 PKS	5 P相	6 PM	7 P 礝	界	昌积		81p	，
s	8	\％	12	6	4，	20	30	$6{ }^{6}$	65	197	318	424	5231	52 s	63 ¢	E戔电：	554	63 2	559	${ }^{4} 5$	456	340	3 Cl	TR 7	139	6］	153
5	3	3	72	45	27	41	193	2 c	531	76	784	519	56	522	543	E93	674	B22	$9!3$	545	629	452	347	258,	1431	107	1078
5	4	4	58	$3+$	2 C	46	134	275	544	774	170	5371	545	59	615	57	659	8×1	$62:$	c53	647	4.3	3151	25.	155	8 E	19472
5	5	5	63	23	26	37	184	270	522	7453	751	545	372	577	5 m	677	658	E．3	857	54	53 ，	432	340	320	202	110	19391
5	6	5	76	53	45	3 E	112	263	$51!$ f	717	734	353	59	693	Ex5	694	724）	896	950	456	674，	502	357	256	246	155	1140
5	7	7	95	59	43	27	54.	92	174	346	444	322，	528	627	607		E73	和3	613 ：	636	52	455	32	28	22		

STATE OF NEW HA APSHARE GEPARTMENE OF TRANSPORTATION－日UREAU OF TRAFFIC
IN COOPERATION WITH US．DEPARTWENT OF TPANSPORTATION FEDERAS HIGHWAY ADNNISTRATION
ONDONDERRYOMATIC TRAFFIC RECORDER DAYA FOR THE WONTH OF MAY 2OIG

＊	\square	－	81269		ONDO	DER																					
\％	$\stackrel{*}{*}$	${ }_{*}^{*}$																									
	E		12 Ans	1A3	2 婑		4 A 析	－ 5 Ant	5 Alf	7 Am	8 A ${ }^{\text {a }}$	9 Am	to Am	If A A	İ－	1 Pm	2 Fut	3 P	4 PM	5 P ¢	6 P8	7 PM	$5 \mathrm{~F} \mathrm{H}_{1}$	9 PM	10 PRA	\％9	otat
5	δ	1	39	8	12	19	$1{ }^{\text {5 }}$	53	73	13	$1{ }^{2} 2$	23	366	384	334	378	315	290］	234	25	23 S	214	126	＋0，	44	29	S 514
5	3	3	8	19	17	39	127	438	646	687	587	330	252	259	208	284	2.81	294	266	386	209	142	96	79	4	18	5387
5	4	4	10.	11	25	34	1441	459	597	69	546	$3 \% \mathrm{~F}$	253	295	265	225	313	290	301	340	212	141	112	30，	63	24	5835
5	5	5	18.	15	18	25	141	419	609	677	615	358	369	261	2741	292	228	313	293	298	220	155	133	83	$0 \cdot 3$	13	5574
5	6	も	d	15 ！	25	4.5	130	422	532	637	54	452	3i1．	325	2 as	278	305	314.	30.	319	255	182	5	E2	： 561	20.	5959
5	7	7	2 C	$1{ }^{\text {¢ }}$	12	17	42	59	131	195	2 EB	349	358	437	430	34 Et	379	383	318］	2201	${ }^{245}$	153.	154	321	55	70	4915
Sum	AWD		44	67	89	141	542	1729	2384	2691	2266	1527	1155	1140	1116	1080	1.194	\＄220	＊168	1243	926	50	439	361	249	89	23450
	A ${ }^{\text {a }}$		11	17	22	35	136	432	596	673	587	382	289	285	279	270	299	305	292	311	232	150	110	90	62	22	5865

STATE OF NEW HANESHIRE, DEFARTINENT OF TRANSPORTATION -BUREAU DF TRAFFIC

*	0	0	B9 269		NDO	DER																					
-	${ }^{4}$	${ }^{4}$																									
	E		12 A	1 AR	2 Ak	3 AM	4 AM	5 A 3	6 Ax	7 새수	4 A¢ ${ }^{\text {a }}$	¢ $\mathrm{ck}^{\text {a }}$	10 Abs	11.40	12 P4*	1 PM	2 FM	3 pM	4 P閏	5 PL	G FH	7 PM	BPM	9PM	40pM	it	
$\underline{5}$	s	1	37	29	7	P1	22	56	83	Q ${ }^{\text {a }}$	173	2 ${ }^{\text {a }}$	383	369	3 C 产	331	323	299	283	2941	220	232	1561	\%21]	T13	4	4367
5	3	3	3	3	22	52	196	529	552	534	395	3 F	229	$35 \overline{1}$	184	269	246	243	212	228	16	12 E	+0,	94	81	22	5022
5	4	4	17	22	32	52	250	514.	568	563	414	280	244	2 LC	$246 ;$	245	249	264	265	245	150	152	210 ,	68	80	29	5243
5	5	5	21	21	27	4 C	; ${ }^{\text {P }}$	519	$\dot{5} \leqslant 8$	527	413	302	192	271	300	247	293	274	253	231	176	135	319	115	75	47	5343
5	\%	6	19	49	35	50	32	484	527	524	418	283	237	245	[43:	2 F ¢	268	28	265	268	260	$1{ }^{19}$	140	15	125	55	5452
5	7	7	19	P6	22	21	52	335	150	210	266	273	293	397	352	3 TH	343	3:5]	349	295	335	29.	2221	120	107	701	5136
Sumb	AND		76	76	122	202	777	2030	2195	2146	1641	1474	902	978	967	965	1059	1041	998	977	763	573	471	408	35	¢ 54	27500
	AWD		$\because .19$	19	34	51	194	\$08	5.49	537	410	294	226	245	242	241	265	260	250	244	191	143	118	102	91	39	5265

SFATE OF NEW HANAPSHIRE, DEPARTMENT OF ERANSPORTATION - BUREALI OF TRAFFIC

 excl $5 / 30$ - Holiday

STATE OF NEW HAMPSHERE，DEPARTMEET OF TRANSPORTATION－BUREAU OF TRAFFIC
IN COOPERATION WITH U．S DERARTMENT OF TRANSPORTATIONFEDERAL HIGHWAY ADKINISTRATION

AUTOMATIC TRAFFIC RECORDER DATA FOR THE WONSH OF MAY 2016

＊B B 269102 ZONDONDERRY－1－93 NB ON RAMP EXIT 5

			12 Am	1 AM	2 AM	3 ABM	4 A 2 ¢	5 A ${ }^{\text {a }}$	古的解	7 AM	明的	9ats	to Ant	if AM	12 Pm	1 PM	2 FM	3 FNA	4 PM	5 PM	6 Pa	7 FM	日 PM	9 P	to P3	11 pg	迷
5	\＆	\ddagger	75	31	27	${ }_{57} 7$	26	53	85	5431	2561	417	451	530	526｜	525	541	445	463 ！	$3)^{3}$	359	329	254	158	136	53	63
s	2＊	3	5	45	30	17	21	69	515	\＄BE｜	237	356	455	4.55	967	446	475	425	355	$33{ }^{3}$	267	239	216	152	120	58	56
5	30	2	3 ${ }^{\text {e }}$	28	23	23.	5	56	323	139	i82	293：	364	451	4.47	426	415	3 d 5	365	325	387	246	241	153	906	78	52
5	3	3	61	34	26	56	79	诃 7	5513	1061	$7{ }^{7}$	592	447	46	4 E 9	597	675	825	850	657	555.	$3{ }^{3} 1$	2 E	192	133	71	4019
5	24	3	坆	36	32	75	H9	227	515	1602	336	513	$4{ }^{4} 2$	518	458	$4{ }^{49}$	715	806	84］	732	544	423	305	205	73	95	1212
5	It	3	42	21.	25	54	75	233	624	1907	E32	506	557	$5 \div 5$	513	481.	79	823	399	755	525	453	305	225	159	E6	194
5	，	4	85	35	51.	46	70.	218	b13	986	323	520	511	477	535	528	692	378	82 C	744	438	$3{ }^{3} 4$	293	174	144	75	101
5	25	H	185	69	45	63	80	246	633	955	336	559	478	547	534	553，	7．6）	8639	823	821．	635	436	352	250	36	96	185
5	\％	5	93.	30	25	47	昭	1939	395	99ir	． 65	574	59	526	585	529	322	919	859	$8: 9$	5261	46^{4}	284	231	7 3	95	ETE
5	$2 \overline{2}$	5	115	Q ${ }^{\text {a }}$	33	5 5	5 Sc	247	6i24	30：3	B84，	6：5	550	576	511	517	738	E76	720	$84 i$	568	$45 E$	362	235	213	317	116
5	\％	E	12	（6）	39	63	S01	220	600	539	602）	595	5ag	591	635	629	733	931	6.	8231	613	505	339	241	226	＋35	
5	27	$\underline{6}$	TO｜	55	35	5？	16	242	575	938	7G7	532	594	810．	650	51	760	25， 2	697	674	59	454	324.	392	207	140	110
5	7	．	11：	42	32	37	45	g2：	197	350	443	515	578	E341	594	613	647	527	523	502	437	374	30：	230	190	126	： 12
5	28	7	89	$4{ }^{\text {a }}$	32	57	46	Q4	135，	356	462	53，	559	493	542	4 CE	586	5941	478	431	350	319！	268	2071	15，哏	199］	72

STATE OF NEW HAMPSHIRE，DEPARTMENT OF TRANSPORTATBN－BUREAU OF TRAFFIC W COOPERATION WITHILS DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMNISTRATON

${ }^{4}$	0	0	81269		ONDO	DER	Y－1．93		RA	EX:																	
D	$\underset{\sim}{A}$	$\stackrel{*}{*}$																									
N			12 AM	$1 A^{\text {a }}$	2 Am	3 Am	4 AM	5 Am	6 AM	7 AH	8 AB	9 ¢ M	10 裪														
${ }_{2}$	E	1	no	63	53	303	3	39	67	151	2 F		$4{ }^{4} 7$			1，	2 P\％	3ph	4 Pan	5 Pm	Lpat	7 P\％A	BPM	9 PH	14P號	12 Pk	
												3.2	447	559	5 FE ，	562	356	5.27	472	$45^{2} 2$	367	346	269	昭	：31	61	6572
\％	29	1	97	$6 ?$	35	$2{ }^{2}$	18.	25	109	152	219，	293	345	4 C ［	427	444	449	420	422	46	369	304	242	236	：50	112	5776
5	30	2	35	35	33	10.	29	40	72.	129	152	223	315	415	455	441	697	472	419	369	342	340	874	22	16：	75	55.56
5	3	3	$4 ?$	37	34	47	143	321	739	737	623	450	334	433	444	513	61	720	905	943	58.	456	329	2751	15 C	103	10134
5	24	3	47.	35	33	4	157	301	E69	647	902	465	44 S	512	493	447	564	isc，	SSE	96	$5{ }^{5} 4$	4.95	344	28	14.31	121	10280
$\stackrel{3}{3}$	$3 i$	3	5 5	2 F	23	40	1900	295	741	82t	706	5011	472	693	547	542	677	92\％	593	962．	544	444	327	291	19.	178	10251
\pm	4	4	56	45	27	42	146	326	7 Ca	？ 96	S39	448 ，	316	44^{4}	496	516	5kE	70 ¢	1927	1093	708	378	337	276	147	99	10554
5	$2{ }^{\text {2 }}$	4	711	31	33.	41	171	323	736	754	61	483	448	530	527	571	6,2	$8{ }^{\text {cin }}$	923	977	614	437	433	351	16.	126	70250
5	ง	$\stackrel{5}{4}$	72	38	35	41	153	305	590	866	414 ！	252	\＄57	499	526	520	634	7 Sk	977	6 60	653	434	359	324	1解	139	10707
5	28	5	113	Et	34	51.	：42	313	697	791	674	484	472	535	523	53 E	639	837	R19	973	020	485	374	347	227	156	1006
5	E	σ	75	59	44	45	173	273	714	163	649	500	455	512	$5 \mathrm{EL4}$	502	54.	E71	G40	93	51 b	$4{ }^{6} 5$	356	329	216	569	51035
5	27	6	E：	42	29	53	± 2	25 ．	707	369	601	514：	469	539	577	581	E69	a3？	222	${ }^{1} 15$	482	432	，3， 36	297	223	5	3514
5	7	7	11	64，	37	35	3 3	100	167	311	395	446	488	523	54	561	$6{ }^{2} 20$ ，	621.	598	547	435	335	307	297	197	！59］	7010
5	28	\}	710	61	53	42	23）	60	777	275	39	4281	425	453	48	4 E 9	453	43 T	436	456	323	348	369	319	237	159	¢092

exci 5－24
6246

STATE OF NEW HABFSHIRE，DEPARTMENT OF TRANSPORTATION－EUREAU OF TRAFFIC
IN COOPERATION WTH US．DEPART解ENT OF TRANSPORTATON FEDERAE HIGHWAY ADMBWSTRATION
AUTOMATIC TRAEFIC RECORDER DATA FOR THE MONTH OF MAY 2016
LONDONOERRY－I－93 SB ON RAMP EXIT 5
$\begin{array}{lll}0 & \mathrm{E} & \mathrm{B} \\ \mathrm{B} & \mathrm{A} & \mathrm{A} \\ \mathrm{F} & \mathrm{Y}\end{array}$
$\begin{array}{ll}29 & 1 \\ 29 & 1 \\ 29 & 1\end{array}$
39
$\begin{array}{llll}5 & 35 & 2 \\ 5 & 3 & 3\end{array}$ 3
3

AM	A A	A明	3 A ${ }^{4}$	4 AK	5Al	GAM	7 AB	B A 4	9 A A ${ }_{\text {d }}$	15 AK	118 AR	$12 \mathrm{PF} \times$	\＃PRs	2 PM	3 ¢ ${ }^{\text {d }}$	4 Pat	$5 \mathrm{P} \times 1$	E PM	7 PM	BP釉	9 PM	10 PM	11 P	
351	25	18	16.	19	459	82	134	170	212	256	297	38	$3{ }^{3}$	275	251	2 c 5	214	＋${ }_{\text {B }}^{\text {c }}$	135	184	54	541	2 B	3534
3 3t	2 S	11	21	23	43.	56	192	447	192	253	27 ，	2 E 5	253	246	206	137	213	464	129	19	63	65	43	3270
3 y	15	13	2］	35	5	63	E0	325	151	184	249	24.5	212	211	205	18.	570	192	146	139	78	43	28	2863
54	27	39	65	175	390	520	4 cos	453	375	273	275	313.	293	341	437	385	393	289	167	！29	95	65	47	6114
51	44	35	61 ！	214	396	521	532	331	331	277	271	316	265	327	393	435	474	121	1992	931	E2	59	4 a	6 6 25
38	18	27	59	185	400	566	523	46	377	327	323	236	312	3 E 4	426	462	472	22e	139	i33	E6	94	${ }^{1} 1$	6350
53	32	3 ？	65	187	423	$5: 8$	515	456	549	324.	275	296	अ4	327	402	3¢8	449	273	185	326	95	65	5	619 ${ }^{6}$
54	23	33	65 ：	153	476	527.	549	$4{ }^{4}$	36 준	249	270	290	275	320	465	423	4311	254	\％27	34	95	67	$5{ }^{5}$	6356
52	34	42	45	136	435	538	482	418	412．	317	310	313	282	324	425：	$4{ }^{4} 2$	415	251	173	176	102	8.	45	629
69	31	34 ）	54	129	413	598	520	476	363	311	352	3 g	289	297	458	474	455	281	393	139	720	72	65	6353
57	26	42	42.	1.5	375	479	424	455	3 B 4	301	2891	353	308	403	4 SE	451	4：1	299	276	140	119	75	57	6439
47	34	53	6	133.	36	454	544	43	356	337	326	332	316	3 F 4	403	343	355	200	15^{3}	136	102	77.	E 4	ETV1）
49	15	15	29）	48	：19	128	209	259	373	288	322	307	314	363	295	319	262	管高	180	134	500	163	Es	6391
45	37	33.	29	4	2	136	192	273 ：	2， 5	286	249	242	243.	254	222	2 T 4.	125	47	165	143	192	73	57	3709
4 c	33.	31	631	18.	492	55s	561.	469	330		274	272	268	30 al	399	359	469，	252	152	：641	60）	7 c ［	42	

DERRY
CRYSTAL AVE SO OF TSIENNETO RD STATE COLNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax.603-669-4350
Web: www.snhpc.org

DERRY FOLSOMRD NEST OF NH 28 STATE COUNT

DERRY
PINKERTON ST
EAST OF TSIENNETORD
STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Latitude: $0^{\prime} 0.0000$ Undefined

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Start	Mon	Tue	Wed	Thu	Ffi	Average	Sat	Sun	Week
Time	02-May-16	03-May-16	04-May-16	05-May-16.	06-May-16	Day	07-May-16	08-May-16	Average
12:00 AM			31	35	47	- 38	- 85	. 85	5711
-0100	*	*	26	\% 25	24	25	37	$\cdots 32$	\% 29
02:00		*	27	27	20	25	35	29	281
03:00	*		37	42	40	40	28	15	32
04:00			127	119	109	118	51	29	87 1318
\% 0500			309	320	308	312	112	56	$221 \sim$
06000		*	938	959	909	-935	301	132	648 , प
07:00			1097	1159	1084	1113	561	353	851 < , , ${ }^{\text {a }}$
08:00		-	1021	1102	1042	1055	788	461	883 प, щ
09:00			873	931	946	917	929	676	871 -
10:00			985	950	995	977	1106	822	972 , < $\quad \cdots \times \cdots$
1100		1034	1001	1131	1202	1092	1286	879	1089 , , , ,
12:00 PM		1087	1110	1101	1248	1136	1047	983	1096 , < ,
0100		1085	1083	1010	1309	1122	1142	745	1062 , , , , , ,
02:00		1446	1410	1505	1496	1464	3134	821	1302, , , <
03:00		1441	, 1382	1363	1495	1420	977	806	1244×1
04:00		1457	1540	1476	1523	1499	1005	741	1290 - , <
05:00		1395	1355	1346	1415	1378	886	784	1197 -
0600		1050	885	934	998	957	767	640	$879 \square \square$
07:00		594	618	666	720	650	572	515	614 प
08:00		467	393	429	526	454	466	361	440 , 4
$09: 00$		247	236	\% 277	417	294	352	218	291 \#
10:00	*	119	119	166	306	178	241	153	184
1100		80	89	95	128	98	126	\% 47	94.
Day Total	0	11502	16692	17108	18307	17307	14034	10383	15461
\% Avg. WkDay	0.0\%	65.5%	95.4\%	99.2\%	105.8\%				
\% Avg.									
Week	0.0\%	74.4\%	108.0\%	119.0\%	118.4\%	115.9\%	00.8\%	67.2\%	
AMPeak	-	11.00	07:00	07:00	11:00	07:00	11:00	$11: 00$	1100
Vol.	-	1034	1097	1159	1202	1113	1288	879	1089
PM Peak	- .	16:00	16:60	14:00	16:00	1600	$13: 00$	12:00	14:00
Vol.	-	1457	1540	1505	1523	1499	1142	983	1302

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-660-4350
Web: www.snhpc.org

Latitude: 0 ' 0.0000 Undefined

DERRY
NO. MAIN ST
NO OF ACADEMY OR
STATE COUNT

438 Dubuque Street Manchester, NH 03102
Te: 603-669-4664 Fax-603-669-4350
Web: www.snłpc.org
Site Code: 82119052 Staten ID:

DERRY
NO. MAIN ST
NO OF TSIENNETORD
STATE COUNT

438 Dubuque Street Manchester NH 03102
Tel: 603-659-4664 Fax:603-669-4350
Web: www.snhpc.org

Southern New Hampshire Planning Commission

DERRY
SO. MAN ST SO OF THORTON ST STATE COUNT

DERRY
TSENNETORD
WEST OF CHESTERRD
STATE COUNT

438 Dubuque Street, Manchester, N: 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

LONDERRY
NH 1C2 (NASHUARD)
(9) DERRY TJ

STAATE COUNT

438 Duburue Street, Manchester, NH 03602
Tel 603-669-4664 Fax:603-669-4350
WeD: www.snhpc.org

Latitude: 0' 0.0000 Undefined

LONDONDERRY NH 28 (ROCKINGHAM RD) @ DERRY TIL STATE COUNT

Southern New Hampshire Planning Commission
 438 Dubuque Street, Manchester, NH 03102

ONDONDERRY GILCREST RD NO OF NH 102 STATE COUNT

Tel: 603-669-4664 Fax:603-669-4350
Web: WWw.snhpc.org
Site Code: 82269082
Station 1 B:

Latitsde: $0^{\prime} 0.0000$ Undefined

82119071 DERRY- NH 102 (EAST BROADWAY) WEST OF ABBOT ST

. 19071 DER

STATE OF NEW HANPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMAICC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014

8211901 DERRY- NH 102 (BROADWAY) EAST OF GRIFFIN ST

A

TYPE STATLON YEAR MONTH
62 119011 $\quad 2014$ ATil

NO	AVERAGE
DAYS	SUNDAY
6	12162

AVERAGE
WEEKDAY
I7752

PEAK HOUR VOLLMES:
AVERAGE AM: AVERAGE MDDAY: AVERAGE PR:

Sunday	665	121年	883	AM-EAM TO 10 AM
WEEKDAY	1054	118	1224	MODAY - 10 AM TO 2 PM
SATUROAY	1073	3359	1302	PM-2PM TOBPM

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014

82119091 DERRY. FORDWAY ST OVER BEAVER BROOK

12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 A
AII 2 AM JAM AM SAM 7 AM 8
AM 10 AM 11

1	31	37	22	10	12	17	38
3	37	18	13	12	45	112	283
4	28	12	14	13	49	98	228
5	32	8	14	13	51	117	258
6	37	19	13	7	33	116	253
7	48	35	12	14	19	37	94

TYPE STATION YEAR MONTH
NO.
$82 \quad 11$ B691 $2014 \quad$ Acili its PEAK HOLR VOLLWES:

AVERAGE AVERAGE	
SENDAY WEEKDAY	
3703	5856

AVERAGE	AVERAGE	COMPUTED	PERCENT	PERCENT
SATURDAY	DARY	VOL HAE	GAN	LOSS
G3O:	5628	$16 B B 54$		

AVERAGE AVS: AVERAGE MDDAY: AVERAGE PM

	AVERAGE AM:	AVERAGE MDDAY:	AVERAGE PA:	
SUNDAY	215	335	295	AM-6AMTO 10 AM
MEEKDAY	410	: 372	481	MDDDA - 10 AM TO 2 FM
SATURDAY	492	570	589	PM-2PMTOEPM

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014 DERRY-FRANKLIN ST EXT NORTH OF FOLSOM RD

62269054 LONDONDERRY- NH 28 (ROCKINGHAM RD) EAST OF PERKINS RD

A

20	7
16	4
17	5
18	6
19	7

	77	44 ;	58	65	98	$143{ }^{\prime}$	281	57	63	B:	975	695	10	99	931	1054		853	769	576	392	249	151	285
163	96	116.	114	233	683	1009	1361	1432	1071	958	1031	1005	1072	1004	145	593	60	1139	818	729	46	334	223	19780
171	105	98	118	257	64	10	1409	1491	1197	1004:	1022:	110	113	119	150	62	175	125	909	75	527		240	20789
206	132	103	117	196	564	1003	1289	137	1141	1060	1006	114	1147	145	18	17	172	131	+1090	723	493	452	339	
257	13	101	104	177	202	277	435	598	751	02	051	07	9	105	97	933.	790	686		494				

NO. AVERAGE	AVERAGE	A	
DAYS	SUNDAY	WEEKDAY	SA
5	12854	$2 D G 67$	

AVERAGE	AVERAGE	COMEDUTED
SATLRDAY	DAFLY	VOLUME
$\$ 3464$	$\because 18729$	$5 B O 605$

SUNDAY	63t	1014	1054	AM-EAMTO 10 AM
WEEKDAY	$\therefore 1406$	1118	1797	MIDDAY - 10 AM TO 2 FM
SATURDAY	751	1978	1056	PM-2 PA TO8P的

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITHU.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATAFOR THE MONTH OF JUNE 2015

M	D
O	A
N	1
	E
6	28
6	24
6	25
6	26
6	27

B2 119070 DERRY- NH 28 (CRYSTAL AVE) SOUTH OF ROLLINS $\$ T$

A $\stackrel{y}{4}$

6	28	1	435	69	39	2		52																	+17		
6	28 24	4	118	69	36	24	318	52	$\underline{405}$	249	. 313	804	693	97	932	$\frac{952}{1028}$	875.	8611	B0B	789	741	678	456	342	217	101.	10827
6	25	5	117	54	38	29	74	181	392	642	823.	816	862	1068	1110	1071	1079	3050:	1094	1130	966	E54:	773	572	394	205	394
6	26	6	119	59	39.	28	75	194	370	620	727	829	867	1036.	1125	3144:	1127	108t	1139	1230	1137	p5	77	69	436:	297	1610
6	27	7	178	60	55	41	56	190	207	402	574:	842	1051	1061	1128	1054	1018	1003	882	894	815	759	618	529	331	163	1386

TYPE STATION	YEAR	MONTH
82	19070	2015

NO	AVERAGE
SLAYSAY	SLI
5	10927

AVERAGE	AVERAGE	AVERAGE	COMPUTED	PERCENT	PERCENT
WEFKOAY	SATURDAY	DAILY	VOLLME	GAJN	1055
55568	\#36i	14708	6412		

SUNDAY
WEEKDAY
SATLROAY SAFLIREAY
556
815

952	875
1096	7174
1128	1018

$A M-G A N T O 10 A N$ MODAY - 10 AM TO 2 PM PM-2P制TO日PM

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014
82119059 DERRY- ASH ST AT LONDONDERRY TL
$\begin{array}{lll}\mathrm{O} & \mathrm{A} & \mathrm{A} \\ \mathrm{N} & \mathrm{T} & \mathrm{Y}\end{array}$

20	1	25	16.	7.	10	11	39 '	51	102.	154	224	292	32	404	284	228	235	205^{\prime}	274	249	207	139	68	43	23	60
15	3	12	5	8	5	39	100	306:	405:	382	331	354	411	488 .	477	454:	551	665	608:	461	314	203	107	54	43	6723
16	4	45	14.	9	4	29	106	281 :	386	357	369	404	471	453	428	496 ,	603	619.	678	561:	366	218	108	64	34	710
17	5	18	11	9	8	34	125	327	419	424	345	408	456	548.	483	576;	613	768	753	556	382	254	182	71	60	783
18	6	21.	17	6	6	31	98.	255.	380	419	427	438	568	559;	512	651	724	777	707	574	419	257	196	94	67	8203
19	7	24	14	13	9	17	40	89	226	345	457	563	636	662	599	629	613	516	468	449	290	259	146	95	53	721

TYPE STATION YEAR MONTH NO.
82 110059 Apri 2014 : 自
AVERAGE AVERAGE AVERAGE
SLNDAY WEEKDAY SATURDAY
AvERAGE
DAlEY
GOMPLIFED
VOLSKKE

PERCENT PERCENT GAIN Loss

PEAKHOLR VOLUMES:
AVERAGE ARA:
SUMDAY
WEBKDAY
SATURDAY

224
410
457

404	271
622	722
662	629

AM- GAM TO 10 AM MDOAY - 10 AMTOR PM PM-2 PMTOBPM

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF JUNE 2015

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WIHUS. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF SEPTEMBER 2015

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC

H D D 82269048 LONDONDERRY-NH 102 (NASHUA RD) EAST OF HAMPTON DR

$\begin{array}{lll}\mathbf{O} & \mathbf{A} & \mathbf{A} \\ \mathbf{N} & \mathbf{T} & \mathbf{Y}\end{array}$
E

,
No.
DAYS
TYPE STATION VEAR MONTH

DAYS
$82 \quad 26904$
2015 July
3
AVERAGE
SUMDAY

WEERDA
37169

PEAK HOUR VOLLMES:

	AVERAGE AM:	AVERAGE MDDAY:	AVEPAGE PN:	
Stivody	*		\cdots	$\therefore A M-6 A M T O L D A$
WEEKDAY	2478	2349	2842	\therefore MIDPAY - 10 AMTO 2 PM
SATURDAY	-	\cdots	\%	PM-2PWTO\&PN

	ws		\%		動		
	RT	Tis	Rip	Et	T*	LT.	3etal
700.8is	518	83	E83	. 337	.585	527	2738
735.715	520	603	209	207	534	562	2825
730.839	455	8	210	<39	\$68	5 EL	2850
745-845	309	855	217	235	577	535	8
brenge	348	84	20\%	-23)	573	515	2705

Southbound								
Hree Perlos	Ciass.	\dagger	0	17	1	0	\#	0
Peak 1	diehts	0	353	461	Site	(i)	129\%	137
Specilied Perisiz	3	**	92 x	¢\%	$5 z^{2}$	sin	\%	5s
	Oher wehsser	0	$3{ }^{\text {a }}$	13	zí	p	34	A
cretastreat	s	5	\%		2 C	\Leftrightarrow	\%	sis
	Total	-	20, ${ }^{2}$	455	89	-	:2st	778
	:FH\%	.	09	3.6\%	be2	e	697	6.9
ymotes		on	Sth				\cdots	7 T
		*		NE	等			
		${ }_{5} 1$	Ti	RT	T	TH	1 l	Tata
	400-500	363	: 6.22	533	$5{ }^{5}$	375	597	3230
	15-515	357	597	543	524	74.3	520	3584
	30-530	. 357	- 35	53 B	532	EGI	525	$33^{3} 8$
	4.45-545	css	- 348	55B	535	835	535	3359
	50.659	314	515	591	575	:523	503	332

					lante to N
	SE		H43	良	：．
	fi	ET	F	7	Totė！
700－650	532	219	517	832	Te
715 cis	\＄35	76	559	846	275
$730-835$	504	246	885	849	7 CBE
345－k45	503	\％ 87	696	815	2134
8tossa	510	2 z ¢	610	794	2180

	RT．	13	Et	TH	15.	Jotal
480503	56e	847	1013	Eis	\％	2834
415－515	597	263	973	493	0	2828
433－53\％	627	260	． 39	1051	0	$2{ }^{2} 13$
445．595	203	36	$\underline{0} 17$	1052	0	zes2
$500-600$	655	307	$\underline{E S}_{11}$	1695	0	$\mathrm{T}^{1} 89$

			Southbound（Ekit 4 5s offl					Westhaund［NX 102$\}$			Eastbaind［ni 102 ）						
Tene Periad	Elass．	\％	1	U	1	0	8	1	U	1	0	7	1	H	1	0	Total
Peak I	i ight	6邺	286	e	9\％	$\dot{1}$	0	sel	0	צ07	1325	1035	1	0	3 cc	1570	200］
Spatitel feras	$\stackrel{+}{*}$	cs	Ss	cis	5	感	0	\％	\％	sp	sis	ss\％	ms	m	5	580	－
	He？Yerks	14	14	0	2غ	d	0	3	θ	10	27	敕	5	\％	13	24	51
Con tesu feek	3	\％	\％	3	38	的	ra	1x	5	a	－	＊	Re		：	2	－
4．45．PAM－5．4．5 f	Tutal	CB3	3018	θ	983	－	\square	517	$\therefore 0$	S17	1357	1052	：		1052	18.50	2952
	FHi	（19）	09：	C	E．s？	9	0	0.39	0	6．E9	（b）	His2	1	4		0．8	． 0.59
	tresors\％				5］	cos				1：\％	± 4				35\％	Sex	

Amesazt		Somat		Tater	Fupera		家	$\begin{aligned} & \text { an } \\ & \hline 10 \end{aligned}$			\&ises	
Nomh	Critu: 3icationicnar 		$4 \pm$	8	123	4	113	15356	75		3488	76
Stued:		108	325	35	63	335	sst	23E5				「15
Fest	A) Leves, wrimz	\%	3593	1059	3 s	420	36	1355			3ه8\%	7 7\%
Wes:		1 ib	313	235	$55!$	58	1153	15152			5 seis	x)
		: 12	1.3)	3274	102	$3 \mathrm{~F} \times 2$	+ax					

Frepect: Exit 4asdits

Seêsonal:
irtersertion Turning Movement Calints

8 Loration: North High St af Ash St Ext

Fraiect：Init 4a SDEFS
location：：High 5 tat Mactden Rd

Growith rates：		
Annsp	$2014-32015$	1.025
	$2016-3015$	0.975

Seasoral：
morsection Turning Movement Counts

		AMP Pak	PM Peak
May－16	Adj Farder	0.96	0.98

	2016－Raw			201E－AADT				2015－AAD				12015－AADT－Rounded			
		$\begin{aligned} & \text { AM Peak: } \\ & \{730-830\} \\ & \hline \end{aligned}$	Fu Feak \｛500－600）	$\begin{gathered} \text { AM Feak } \\ 1730-8301 \end{gathered}$	Approact Jotals	$\begin{aligned} & \text { PNE Peak } \\ & 5500-650 \mathrm{O} \end{aligned}$	Appioart Totals	$\begin{gathered} \text { AM Peak } \\ {[745-845]} \end{gathered}$	Approath Totats	$\begin{aligned} & \text { PM Peak } \\ & (445-545) \end{aligned}$	Approach Totals	AMI Peak （745－845）	Approars Totals	PM Peak (445-543)	Approzch Totals
EB	LT	12	12	12	14	12	16	12	14	12	16.	10	10	10	10
	Thru	0	0	0		0		0		0		O		0	
	RT	2	4	2		4		2		4		0		0	
W／B	切	0	0	0	16	0	0	0	0	0	0	0	0	0	0
	Thed	$=0$	0	0		0		0		0		0		1	
	RT	－ 0	0	0		0		0		0		0		0	
N日	13	0	3	0	313	3	725	0	305	3	767	0	310	0	705
	Thry	326	737	313		722		305	\cdots \％	704		310		700	
	RT	－ 0	0	0		0		0		0		0		0	
S8	［T	－ 0	B	0	428	0	45\％	0	418	0	445	0	420	0	350
	Timer	$\because 428$	460	411		453		401		440		400		$\because 440$	aso
	AT	18	5	17		5		17		5	\vdots	20		10	\because
	total	786	1221	755	755	1197	1197	737	737	1168	1568	740	740	1160	1160
\＃lue Seasonal Factor								trse Annual Factor							

		Southbound（A，High St．）					Northbound（N，Kigh St．］					Fasibound（Wadden Md．）				
Time Period Class：	$\bigcirc \mathrm{B}$	\bigcirc	U	1	0	T	L	Y	1	0	中	1	1	1	0	Total
Peak 1 交ghts	4	417	0	421	314	31.3	0	0	313	419	2	1	0	3	4	737
Specified Yetiad \％	2zas	9ise	m	34\％	93\％	趛	年	御	Esi	－	10x：	${ }^{3} \times$	6\％	21\％	32\％	545
7\％0 AM－9：DOAPOther veliclex	34	11	f	75	$\because 24$	13	－	0	13	$\therefore 11$	0	11	0	11	14	49
One fibir Fear ，\％\because	\cdots	3＊	nt	Ex．	7 za	45	$0 \times$	Sm．	4\％	3	0%	9z\％	D 15	70\％	于旡	$\underline{6}$
7：30 Ant－S：304P Fotal	18	428	0	446	338	326	9	0	326	430	2	12	0	14	18	786
Pat	6．5E	0.95	\＄	0.56	0.9	0.95	0	0	0.5	0.95	0.5	0.78	D	0.44	0.55	0.94
Agereeth\％			\therefore	57%	435				4\％							

a 12 Locetia Tsienneto Rd-Pinkerton $5 t$

Grewtirate		
Annue!	2014-32015	1.625
	2015-2015	0.975
Seasonat:		
insersection ${ }^{\text {a }}$	urning movem	Cumis

intersection Turnine wovement Cankis

Prolet: Extit 4e50f15

ㅊt:	Et5
Lxation:	NiH 28-Stobie Pand

Growith sies:		
A¢̣!ual	2014->2015	1025
	2016-32015	10.975
Seasona		

thersection furning Movement Counts

$$
\text { Mray-15 } \quad \because \text { Ad Fector= } \quad 0.96
$$

2016. Raw				2016-AADE				2015.AAD				2055-AADT- Rounded			
		$\begin{aligned} & \text { Aty Peak } \\ & \text { (pyosjob } \end{aligned}$	$\begin{aligned} & \text { FM Peak } \\ & 1439.536 i 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AMPeck } \\ & 1730-530 \end{aligned}$	Approzch Totols	PM Peak (5CO-ETO)	$\begin{gathered} \text { Apipead } \\ \text { Totels } \end{gathered}$	$\begin{aligned} & \text { AM Peak } \\ & (745.345) \end{aligned}$	Approzich Tatals	PMFeak [445.545\}	Aproan Totals	$\begin{aligned} & \text { AM Peak } \\ & (745-645) \end{aligned}$	Approach Tntals	PMPeak [$1.2 .55-545$)	Approsth Toizls
的	4 T	17	42	16	752	41	1193	16	739	40	1163	15	735	60	3165
	Thru	757	5175	735		\$152		718		127		720		1125	
	RI	0	0	0		0		0		0		1	:	0	
Wib	tT	0	0	9	$7 \mathrm{Pb1}$	0	880	0	583	0	858	0	E85	0	EES
	Thersi	589	733	651	:	718		644		700		645		700	
	RT	42	165	10		162		39		158		40		150	
NE	Lt	i	b	0	0	${ }^{\circ}$	D	0	1	\%	0	0	0	0	0
	Tincte	1	$\therefore 0$	0		0		0		9		0		\square	
	RT	B	0	0		0		0		0		0		0	
58	LT	83	74	80	116	73	103	78	113	71.	106	8	115	70	100
	Thits	\because	0	0	\cdots	0		0		0		0		0	
	ET	37	31	36		30		35		29		35		30	
	total	1635	2220	1589	1569	2176	2276	1530	1535	2121	2121	1535	1535	2125	2125
				Use Seasoral fattor				U5e Anruial	Fatiot	\cdot		Use therse	Syechiot	kisting cor:	d analuses


```
*)
```



```
    M,
```


Tinne Pation
Pesik

\qquad spesifed Ferited ©p Heto reat

\％	i	
23	25	玉
sa	， 8 en	
\because	4	
s：	\cdots	\cdots
394	74	
¢\％	e．35	

x

Kesthourin｜Pinkeston st．）					
T	t	1	1	0	fotal
42	9	\square	ses	255	j145
tex	Hith	以	＝3	12\％	s＊
5	0	0	\％	1	13
${ }_{0}$	－	A	s	\pm	s
x_{1}	9	0	504	255	177
0．2E่	0\％	0	6装	1：4	－¢

$$
\begin{aligned}
& \text { Sedscriz }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (act }
\end{aligned}
$$

CLD/Fuss \& O'Neill Inc.

540 Commercial Street

Manchester, NH 03101

English Range RD From North							Rt 102 Ftom East			From South					Kt 102 From West						
ak Hour Analys	Left	Tha	$\begin{aligned} & \text { Right } \\ & \text { to 08: } \end{aligned}$	Peds AD -	Total 10 f	Leit	Thes	Right	Peds	App Total	Lef	Thfa	Right	Peds	App Tola	Left	Thay	Right	Peds	App T Tal	In Total
eak Hour for Enti	Inter	ction B	ins at	:00 A																	
07:00 AM	4	0	23	0	27	0	121	B	0	129	G	0	0								
07:15 Ab	2	0	17	0	19	0	140	4	0	144	0	0	0	0	0	10	67	0	9	77	233
07:30 AM	3	0	16	0	19	0	137	4	0	138	0	0	0	0	0	20	49	0	0	69	232
07:45 AM	1	0	$\therefore 19$	0	20	0	152	3	0	138 155	0	0	0	0	0	13	56	1	0	70	227
Toial Volume	10	6	75	0	85	0	550	16	0	565	0	0	0	0	0	11	49	0	0	60	235
\% App. Tolat	11.8	0	88.2	0		0	97.2	2.8	0	50	0	0	0	0	0	\%4.	221	. 1	0	276	927
Prf	. 625	. 000	815	000	. 787	000	905	.500	0 OLO	.913	000	000	000	000	000	19.6	88.	0.4	0	806	86

CLD/Fuss \& O'Neill Inc.

540 Commercial Street

Manchester, NH 03101

English range kD

Start Time Left Thu Remint Peds Ago Total Peak Hour Analysis From Giop PM lo 05:45 Pht - Peak 1 of 1 Peak Hour for Entire intersection Begins al 04:30 PM

$04: 30 \mathrm{PM}$	4	0	11	0	15
$04: 45 \mathrm{PM}$	3	0	10	0	13
$05: 00 \mathrm{PM}$	7	0	14	0	21
$05: 15 \mathrm{PM}$	4	0	8	0	12
Total volume	18	0	43	0	61
\%App Total	29.5	$\ddots 0$	70.5	0	
PHF	.043	000	768	000	726

APPENDIX B: SEASONAL, ANNUAL AND AXLE CORRECTION FACTORS

Year 2015 Monthy Data
Peak Hour Data
Group 4 Averages Urban Highways:

	Data					Factors		
Month	AM	Mid	PM	Sat Mid	AM	Mid	PM	Sat Mid
Jan	17267	13564	20154	15524	1.11	1.14	Q 11	1.17
Feb	17366	13436	20253	17441	1.10	1.16	111	1.05
Mar	19827	14389	22267	16671	0.97	1.08	1.04	1.09
Apr	19924	15214	22733	18484	0.96	1.02	0.99	0.99
May	20046	16198	23476	18916	0.96	0.96	0.96	0.96
Juri	19952	16451	23779	19485	0.96	0.94	0.94	0,94
Jul	18444	77126	23314	18349	1.04	0.91	0.96	0.99
Aug	18720	16672	23360	19436	1.02	0.93	0.96	0.94
Sep	20260	16000	23092	19374	0.95	0.97	0.97	0.94
Oct	20391	15823	23465	18951	0.94	0.98	0.96	0.96
Nov	19208	15635	21905	17902	100	0.99	1.02	1.02
Dec	18348	15787	21589	18339	1.04	0.98	1.04	0.99
Average	19146	15525	22449	18239				

Factors are based on Average Monih.

NHDOT Seasonal Adjustment Factors by Roadway Group - 2015

NHDOT Axle Correction Factors

by Functional Classification - 2015

	AcfYear	FC	Description	Factor
Rural	2015	01		0.908
	2015	02		0.962
	2015	06		0.967
	2015	07		0.959
	2015	08		0.993
	2015	09		0.997
Urban	2015	11	Interstate	0.953
	2015	12	Freeways/ Expressways	0.956
	2015	14	Principle Arterals	0.973
	2015	16	Minor Arterials	0.981
	2015	17	Colleciors	0.989
	2015	19	Local Streets	0.987
	2015	00		1.000

APPENDIX C: INTERSTATE COUNTS AND BALANCING CALCULATIONS AT RAMP TERMINALS

1-93 interstate Balancing based on ATR and TMC counts - 2015 and 2016

2015 AWDT - Mandinine 193

2015 AWOL - Mbinline -93
PMf Path

3 新

58

$\begin{gathered} \text { START } \\ \text { i93 } 5 \text { of E4 } \end{gathered}$	gubmaci EA 却 0 ff	$\begin{aligned} & \mathrm{ADD} \\ & \mathrm{EANBED} \end{aligned}$		193 NB N of E4	SEBTRA[] ES NE Off	$\begin{gathered} \mathrm{ADO} \\ \mathrm{ES} \mathrm{NBON} \end{gathered}$	193 N N Niolf5
3410	31.87	785		30.1	458	769	3322
3410	1185	790		3015	460	776	3325
Start	Subiract	StBriad	ADO	19358	Sumpati	${ }^{\text {A }}$ -	19358
1935 di E4	E458 onk-1	458 on wh-	Et 5in iff	Note4	E5 5B on	E5scof	N of 55
2466	302	297	924	2845	414	911	3362
2465	3 3่	213	925	1870	135	910	3365

\qquad vaifly a spetr $\operatorname{ses} \mathrm{No}$ \qquad 05.0244 SHEET NO \qquad Of \qquad

540 Commerciai Steen Manchester, Nr 03501
catcurizor PK bant 2-22.16

CHECKEO By \qquad ontic \qquad $81 / 16$ swbjecy 2015 Am Peal \qquad scais AWDT

540 Commercial Street, Nantrester, Nri そ3 to (603) 668-8223 - Fax. \{003) 66a.gan2 cdectengineers.ctm * whwctonginears.fom

New riamponire - Vertath - Kane

108 \qquad Erstya SHETNO \qquad ICEA NO \qquad
\qquad
cambiarte or \qquad Daf= $\quad 7.27-16$
DATE \qquad 817116
sureer 2015 Am Puck-Butanced
scrie $730-830$

S40 Conmercin: Sueet, Mtanchester Nim pato

 \qquad

CAhCULATEDO \qquad Ple CHECKED. GY. \qquad LCa

品 \qquad $05 \cdot 244$ OF. \qquad DABE \qquad Dats \qquad 817116 scue An M/

$$
230.830 \text { suasc Balacestapy velueve }
$$

$$
\text { T NA }+6 n=410
$$

$$
A B C=1060
$$

$$
426 \rightarrow 410(+25 b)
$$

$A B \operatorname{lan} \angle T$ on $=S Q^{2} \rightarrow 5 E+$
Alfon
2) $5 \sqrt{3}+1 / \cos +1$

$$
\text { Sp an }(4-5)=520
$$

$$
\text { S. Slat }(E-f)=665
$$

$$
S 3+6 \quad 1=75+
$$

$$
\begin{aligned}
& 53+1+1+167 \mid 260
\end{aligned}
$$

\qquad
5axs $7.29-16$
\qquad
DATE \qquad
Scale
$73,-830 \operatorname{tin} 6$

4) Selenc|adr (1ten 192 1239

S40 Commerciat Streat, Ntanchester, NH 03101

1.3 \qquad $5 x+4 \pi$
\qquad :3ano \qquad 05-244 5 SEO 5 NO \qquad of \qquad
CALCULATED BY \qquad cureceio gr LCG
adte \qquad 7-27-16
) \qquad suner Zors PM Deale - Belanced raups
scale $445-545$

540 Commercial Streat Manchestef, Ni4 0310 (503) $\mathrm{bcb}-8223$ - Fax. (503) 668-8502
cid@cidengineers con - whw cherginats com New Hamoshirg - Vermont - Mana

Loo Lentun
5मFeT No \qquad

Chlculateay
CHENES BY CO
errt 4 volune
, NOE \qquad $25-29$
\qquad DATE \qquad的苔 \qquad $810 / 16$
\qquad same PA ple

2) 5β an $\operatorname{lof} f+4$

$$
\begin{aligned}
& 5 B \mid \text { on }(w-5)-215 \\
& \text { S64 (et } 5=300 \\
& \text { taxdy }-9 z
\end{aligned}
$$

$$
\begin{aligned}
& 4134=-542-485+580(N B 4)-106+-215(5 B 20)
\end{aligned}
$$

$$
\begin{aligned}
& 108 \mathrm{ar}
\end{aligned}
$$

540 Commercial Streat, Manchester, Nit O3:01 (603) 662-8223 - Fax. (603) 652-8802 clegeidencgineerscom - usw cldengineers chem New Flampshire : Vermont - Maine

OR \qquad ShEET NO. DF. \qquad

Stais

APPENDIX D: TRAVEL DEMAND FORECAST MODEL DEVELOPMENT AND CALIBRATION REPORT - SOUTHERN NH PLANNING COMMISSION, JANUARY 2018

Travel Demand Forecast Model Development and
 Calibration Report for I-93 Exit 4A Supplemental Draft Environmental Impact Statement

Prepared by the Southern NH Planning Commission and CLD/Fuss \& O'Neill

January, 2018

Table of Contents

1. INTRODUCTION 3
2. 2015 BASE YEAR MODEL 3
2.1 Network 3
2.2 Traffic Analysis Zone (TAZ) System 3
2.3 Population and Households 3
2.4 Student Enrollment 5
2.5 Employment 5
2.6. Base Year Model Calibration and Validation 6
3. FUTURE YEAR 2040 NO-BUILD MODEL 7
3.1 Network 7
3.2 Population and Households 7
3.3 Employment 9
4. REFERENCES 12
APPENDIX A STUDY AREA TAZ SPLIT 13
APPENDIX B PROJECT LIST. 14
APPENDIX C 2015 BASE YEAR MODEL STUDY AREA CALIBRATION RESULTS 15
APPENDIX D POPULATION PROJECTION ${ }^{[2][5]}$ 16
APPENDIX E 2015 EMPLOYMENT AVERAGE 17

1.INTRODUCTION

The report serves the purpose of documenting the methodology for development and calibration of the travel demand model for the update of I-93 Exit 4A SDEIS. The report includes development and calibration for the 2015 24-hour base year model, and development for 2040 No-Build 24-hour model. This report doesn't include detailed network and land use description for 2040 build scenarios, alternative A, B, C, D, E and F, because this information is included in the traffic and land use reports prepared by CLD|Fuss \& O'Neill and Louis Berger.

2. 2015 BASE YEAR MODEL

2.1 Network

The updated 2015 base year regional travel demand model was built based on the 2010 base year SNHPC regional model. The 2010 Travel Demand Forecast Model Development and Calibration Report ${ }^{[1]}$ detailed development and calibration of the 2010 model. The model covers fifteen communities: Auburn, Bedford, Candia, Chester, Deerfield, Derry, Francestown, Goffstown, Hooksett, Londonderry, Manchester, New Boston, Raymond, Weare, and Windham. The change to the functional classification system for roadway system was incorporated into the 2015 base year model due to changes to the urbanized area from the 2010 U.S. Census. In addition, projects completed between 2010 and 2015, the Manchester Airport Access Road, Pettengill Road in Londonderry, NH 28 Manchester Road improvement in Derry, Hooksett Open Road Tolling, I-93 Exit 5 reconstruction, US 3/NH 28 widening in Hooksett, I93 Exit 3 area reconstruction, were added to the 2015 model.

2.2 Traffic Analysis Zone (TAZ) System

The fifteen communities in the model area were disaggregated into 306 internal TAZs in the 2010 model. To better reflect traffic patterns around the I-93 Exit 4A study area, TAZs 69 in Londonderry, 123, 124, 125 and 133 in Derry were split into additional smaller TAZs indicated in Table 1. Layouts of these TAZs are displayed in Appendix A.

Table 1 TAZ Splits

TAZ 2010	TAZ 2015 for I-93 Exit 4A
69	$69 \mathrm{~A}, 69 \mathrm{~B}$ and 69C
123	123 A and 123B
124	$124 \mathrm{~A}, 124 \mathrm{~B}$, and 124C
125	125 A and 125B
133	133 A and 133B

2.3 Population and Households

Population estimates from 2015 Population Estimates of New Hampshire Cities and Towns prepared by the New Hampshire Office of Strategic Initiatives (NHOSI) ${ }^{[2]}$ were used for the 2015 base year model. A summary table including 2015 population estimates for communities within the model area from the NHOSI estimates is presented in Appendix D. Dwelling units collected by SNHPC annually that were issued Certification of Occupancy between 2010 and 2015 by communities were used in allocating change in population into TAZs, and calculating number of households in a TAZ.

The formula used for calculating dwelling unit increases between April 2010 (Census day on April 1) and December 31, 2015 is shown below.

$$
\left.\Delta D_{T A Z}=\Delta D_{2015 T A Z}+\Delta D_{2014 T A Z}+\Delta D_{2013 T A Z}+\Delta D_{2012 T A Z}+\Delta D_{2011 T A Z}+\frac{3}{4} \Delta D_{2010 T A Z}\right)
$$

Where:
$\Delta D_{T A Z}=$ Increase of dwelling units in a TAZ between April 1, 2010 and December 31, 2015
$\Delta D_{2015 T A Z}=$ Increase of dwelling units in a TAZ in 2015
$\Delta D_{2014 T A Z}=$ Increase of dwelling units in a TAZ in 2014
$\Delta D_{2013 T A Z}=$ Increase of dwelling units in a TAZ in 2013
$\Delta D_{2012 T A Z}=$ Increase of dwelling units in a TAZ in 2012
$\Delta D_{2011 T A Z}=$ Increase of dwelling units in a TAZ in 2011
$\Delta D_{2010 T A Z}=$ Increase of dwelling units in a TAZ in 2010
2015 dwelling units were calculated as follows:

$$
D_{2015 T A Z}=D_{2010 T A Z}+\Delta D_{T A Z}
$$

The 2015 population in TAZs were calculated by allocating the difference in population between 2010 and 2015 in a community. If the population increased during 2010-2015, the following formula was used.

Where:

$$
P_{2015 T A Z}=P_{2010 T A Z}+\left(P_{2015 c o m}-P_{2010 \mathrm{com}}\right) * \frac{\Delta D_{T A Z}}{\Delta D_{\text {com }}}
$$

$P_{2015 T A Z}=2015$ population in a TAZ
$P_{2010 T A Z}=2010$ population in a TAZ
$P_{2015 \text { com }}=2015$ population in the community (NHOEP estimates) in which the TAZ located
$P_{2010 \text { com }}=2010$ population in the community (2010 US Census) in which the TAZ located
$\Delta D_{T A Z}=$ Increase of dwelling units in a TAZ between April 1, 2010 and December 31, 2015
$\Delta D_{\text {com }}=$ Increase of dwelling units in the community in which the TAZ located between April 1, 2010 and December 31, 2015

The 2015 population in TAZs were calculated by allocating the difference of population between 2010 and 2015 in a community. If the population decreased during 2010-2015, the following formula was used.

$$
P_{2015 T A Z}=P_{2010 T A Z}+\Delta P_{D W T A Z}+\left(P_{2015 c o m}-P_{2010 c o m}-\Delta P_{D W c o m}\right) * \frac{D_{2015 T A Z}}{D_{2015 c o m}}
$$

Where:
$P_{\text {2015TAZ }}=2015$ population in a TAZ
$P_{2010 T A Z}=2010$ population in a TAZ
$P_{2015 \mathrm{com}}=2015$ population in the community (NHOEP estimates) in which the TAZ located
$\Delta P_{D W T A Z}=\frac{P_{2010 T A Z}}{H H_{2010 T A Z}} * \Delta D_{T A Z}$ - Assume population change in a TAZ due to dwelling units change between 2010 and 2015
$H H_{2010 T A Z}=2010$ number of households in a TAZ
$\Delta P_{D W c o m}=\sum \Delta P_{T A Z}$ - Assume population change in the community in which the TAZ located due to dwelling units change between 2010 and 2015
$P_{2010 \text { com }}=2010$ population in the community (2010 US Census) in which the TAZ located
$D_{2015 T A Z}=2015$ dwelling units in a TAZ
$D_{2015 \mathrm{com}}=2015$ dwelling units in the community in which the TAZ located
Number of households in a TAZ was calculated as follows.

$$
H H_{2015 T A Z}=D_{2015 T A Z} * O R_{2010 T A Z}
$$

Where:

$$
\begin{aligned}
& H H_{2015 T A Z}=2015 \text { number of households in a TAZ } \\
& D_{2015 T A Z}=2015 \text { dwelling units in a TAZ } \\
& O R_{2010 T A Z}=2010 \text { Occupancy rate in a TAZ }
\end{aligned}
$$

2.4 Student Enrollment

School enrollments for 2014-2015 for all elementary, middle and high schools in the region were collected from the New Hampshire Department of Education. College enrollments were collected by contacting colleges in the region.

2.5 Employment

The quarterly employment of 2015 for each community in the region including first, second, third and fourth quarters was downloaded from the New Hampshire Employment Security (NHES) website. A Summary table containing these data is shown in Appendix E.

The average annual employment for communities was calculated by averaging the four quarters of employment. Considering that the 2010 SNHPC employment for model input calculated directly from the employer database is slightly higher than NHES's annual average, the 2015 annual employment was adjusted to reflect the difference between the two data sets. The adjustment was made according to the following equation.

$$
E_{2015 \text { comadjusted }}=E_{2015 \text { comNHES }}+\left(E_{2010 \text { comSNHPC }}-E_{2010 \text { comNHES }}\right)
$$

Where:

$$
\begin{aligned}
& E_{2015 \text { comadjusted }}=\text { Adjusted } 2015 \text { employment in a community } \\
& E_{2015 \text { com }} \text { HES }=2015 \text { employment average in a community based on NHES data } \\
& E_{2010 \text { comNHES }}=2010 \text { employment average in a community based on NHES data } \\
& E_{2010 \text { comSNHPC }}=2015 \text { employment average in a community based on SNHPC } \\
& \text { employment database }
\end{aligned}
$$

Building permits issued 2011-2015 were used to identify new businesses in a TAZ. Employment in a new building was estimated based on a similar business type in 2010 employment database obtained from NHES. Employment in businesses we were aware closed during 2011-2015 was estimated based on the 2010 employment database.

To allocate the difference between 2010 and 2015 to TAZs by employment category, the following formula was used.

$$
\begin{aligned}
E_{2015 T A Z-E C}= & E_{2010 T A Z-E C}+\Delta E_{D W T A Z-E C}+\left(E_{A n n 2015}-E_{A n n 2010}-\Delta E_{D W 2011-2015}\right) \\
& *\left(E_{2010 T A Z-E C} / E_{A n n 2010}\right)
\end{aligned}
$$

Where:

$$
E_{2015 T A Z-E C}=2015 \text { Employment in a TAZ by employment category group }
$$

$E_{2010 T A Z-E C}=2010$ Employment in a TAZ by employment category group
$\Delta E_{D W T A Z-E C}=$ Assumed Change of Employment in a TAZ by employment category group due to number of building permits change between 2010 and 2015
$E_{\text {Ann } 2015}=2015$ Annual employment in the community in which TAZ located
$E_{\text {Ann2010 }}=2010$ Annual employment in the community in which TAZ located
$\Delta E_{D W 2011-2015}=$ Change of employment in the community due to number building permits change between 2010 and 2015

2.6. Base Year Model Calibration and Validation

Highway assignment is crucial for models to produce traffic volume estimates within acceptable ranges of tolerance compared to actual ground counts. For detailed model calibration and validation methodology information, refer to 2010 Travel Demand Forecast Model Development and Calibration Report for the Southern New Hampshire Planning Commission ${ }^{[1]}$. Model calibration and validation results for the 2015 base year are as follows.

- The difference of Vehicle Mile Traveled (VMT) estimates between the model and the Highway Performance Monitoring System (HPMS) is 1.28%, which is acceptable according to the Model Validation and Reasonableness Checking Manual ${ }^{[3]}$, which is allowed a 3% difference by Environmental Protection Agency (EPA).
- The Coefficient of Determination $\left(\mathrm{R}^{2}\right)$ region wide equals 0.91 which is greater than the Model Validation and Reasonableness Checking Manual ${ }^{[3]}$ recommended, which is 0.88 for all roadways with functional class collector and higher. Percent Root Mean Square of the Error (\% RMSE) equals 27.28 for all roadways with functional class collector and higher which is less than the commonly accepted standard of $30{ }^{[3]}$.
- Absolute percentage differences of total observed versus model estimated volumes at a Merrimack River screen line crossing and external station cordon line crossings are less than 2%.
- Absolute percentage differences of observed versus model estimated volumes at locations within I-93 Exit 4A area shown in Appendix C are within acceptable ranges of tolerance based on FHWA targets ${ }^{[3]}$.

3. FUTURE YEAR 2040 NO-BUILD MODEL

3.1 Network

2040 No-Build model network was built by adding projects documented in Regional Transportation Plan 2017-2040 for the SNHPC Region ${ }^{[6]}$ to the 2015 base year model except I-93 Exit 4A project. The list of the projects is shown in Appendix B.

3.2 Population and Households

Population projections used in the 2040 No-Build model were based on the State of New Hampshire County Population Projections 2015-2040 By Municipality ${ }^{[5]}$ prepared by New Hampshire Office of Strategic Initiatives (NHOSI) in partnership with the state's Regional Planning Commissions and additional adjustments to NHOSI projections were made according to the final numbers in the Land Use Scenarios Report ${ }^{[4]}$ to reflect additional population and households for relevant 2040 No-Build development projects. The population projections from 2015 through 2040 for each community in the region from the NHOSI projections are presented in Appendix D.

Due to the fact that numbers of dwelling units changes in five-year increments was used in distributing population changes to TAZs, and calculating numbers of households in a TAZ, SNHPC dwelling unit projections for 2010 through 2040 (Completed 2012) were adjusted for 2020 through 2040 to reflect number of dwelling units change between 2010 and 2015. An assumption was made that numbers of dwelling unit growth rates 2015-2040 were kept the same as the 2012 Southern NH Planning Commission dwelling unit projection for 2010-2040, which were reviewed by corresponding communities in the region. Two conditions were considered as the population was allocated to TAZs: 1) population increase in a five-year period; 2) Population decrease in a five-year period.

Condition one

When the population increases during a five-year period, the allocation is calculated using the following formula.

$$
\Delta \boldsymbol{P}_{T A Z}=\frac{\Delta \boldsymbol{P}_{\text {com }}}{\Delta \boldsymbol{D}_{\text {com }}} * \Delta \boldsymbol{D}_{T A Z}
$$

Where:
$\Delta P_{T A Z}=$ population change in a TAZ during a five-year period
$\Delta P_{\text {com }}=$ Population change in the community in which the TAZ located during the five-year period
$\Delta D_{T A Z}=$ Number of dwelling units change in a TAZ during the five-year period
$\Delta D_{\text {com }}=$ Number of dwelling units change in the community in which the TAZ located during the five-year period

Condition two

When the population decreases during a five-year period, the allocation is calculated using the following formula.

$$
\Delta \boldsymbol{P}_{T A Z}=\Delta \boldsymbol{P}_{D W T A Z}+\left(\Delta \boldsymbol{P}_{\text {com }}-\Delta \boldsymbol{P}_{\text {DWcom }}\right) * \frac{\boldsymbol{D}_{T A Z}}{\boldsymbol{D}_{\text {com }}}
$$

Where:
$\Delta P_{T A Z}=$ Population change in a TAZ during a five-year period
$\Delta P_{D W T A Z}=H H S_{2015 T A Z} * \Delta D_{T A Z}=$ Assume population change in a TAZ during a five-year period due to number of dwelling units change
$H H S_{2015 T A Z}=2015$ household size within the TAZ
$\Delta P_{\text {com }}=$ Change of population in the community in which the TAZ located during the 5-year period
$\Delta P_{d w c o m}=\sum \Delta P_{d w T A Z}=$ Population change in the community in which the TAZ located during the five-year period due to number of dwelling units change
$D_{T A Z}=$ Number of dwelling units in the TAZ at the end of the five-year period

$$
D_{c o m}
$$

= Number of dwelling units in the cummunity in which the TAZ located at end of the five - year period

Population within a TAZ at end of a five-year period was calculated as follows.

$$
\boldsymbol{P}_{T A Z}=\boldsymbol{P}_{T A Z-1}+\Delta \boldsymbol{P}_{T A Z}
$$

Where:
$\mathrm{P}_{\mathrm{TAZ}}=$ Population in the TAZ at end of the five-year period
$\mathrm{P}_{\mathrm{TAZ}-1}=$ Population in the TAZ at end of the prior five-year period

Number of Households Calculation

Numbers of households for TAZs were calculated using the following formula.

$$
\boldsymbol{H H}_{T A Z}=\left(\boldsymbol{P}_{T A Z}-\boldsymbol{P}_{\text {specialTAZ }}\right) / \boldsymbol{H} \boldsymbol{H} S_{2015}
$$

Where:

$$
H H_{T A Z}=\text { Number of households in a TAZ }
$$

$$
P_{\text {specialtaz }}=\text { Special population such population in nursing homes, jails, etc. in the }
$$

TAZ

$$
H H S_{2015 T A Z}=\text { Household size in the TAZ }
$$

3.3 Employment

In order to reflect changes in employment between 2010 and 2015, the original SNHPC employment projection for 2010 through 2040 (completed in 2012) was adjusted for 2020 through 2040. Three steps are followed in calculating the 2015-2040 employment projection. Additional adjustments were made to the final numbers based on the Land Use Scenarios Report ${ }^{[4]}$ to account for additional employment for relevant 2040 No-Build development projects.

Step 1: Growth rates

The study assumes that employment growth rates by employment category group for 2015-2040 were kept the same as the 2012 Southern NH Planning Commission employment projection for 2010-2040, which were reviewed by corresponding communities in the region. The following formula was used in calculating growth rates over a five-year interval.

$$
G R_{\text {Com EC } i}=\left(E_{2012 \text { Com EC } i}-E_{2012 \text { Com EC } i-1}\right) / E_{2012 \text { Com EC } i-1}
$$

Where:

Step 2: Total employment projection for an employment category group in a community 2020 through 2040

The 2015 total employment estimate for an employment category group in a community was considered as base. Total employment projections for the employment category group in the community 2020 through 2040 were calculated as follows:

$$
E_{2016 \text { Com EC } i}=E_{2016 \text { Com EC } i-1} *\left(1+G R_{\text {Com EC } i}\right)
$$

Where:
i = projection years 2020,2025,2030,2035 and 2040
$E_{2016 \operatorname{comeC} i}=$ Total employment for an employment category group in the community at projection year i in the 2016 projection
$E_{2016 \text { com EC i-1 }}=$ Total employment for the employment category group in the community at projection year i-1 in the 2016 projection

Step 3: Total employment for an employment category group in the community for 2020-2040 projection distributed to TAZs

Two conditions were used as total projected employment for an employment category group in the community was allocated into TAZs.

Condition one

When the data for developable land for a land use category is available and appropriate to use in a community, employment is distributed based on percentage of developable land in a TAZ in total of developable land in the community.

$$
E_{2016 T A Z E C i}=E_{2016 T A Z E C i-1}+\left(E_{2016 \text { Com EC } i}-E_{2016 \text { Com EC } i-1}\right) * \text { Percentage }
$$

Where:
$E_{2016 \text { TAZ EC } i}=2016$ Employment projection in a TAZ for an employment category group at projection year i
 projection year i-1 in the 2016 projection
$E_{2016 \text { com EC } i}=$ Total employment for the employment category group in the community at projection year i in the 2016 projection
$E_{2016 \text { com EC } \text { i-1 }^{\prime}}=$ Total employment for the employment category group in the community at projection year i-1 in the 2016 projection

Condition two

When the data for developable land for the land use category is not available or not appropriate to use in a community, employment in a TAZ is calculated using the same growth rate as that of employment of the employment category.

$$
E_{2016 T A Z E C ~} i=E_{2016 \text { TAZ EC } i-1} *\left(1+G R_{2016 \text { Com EC } i}\right)
$$

Where:
$E_{2016 \text { TAZ EC } i}=2016$ Employment projection in a TAZ for an employment category group at projection year i
$E_{2016 \text { TAZ EC i-1 }}=2016$ Employment projection in a TAZ for the employment category group at projection year i-1 in the 2016 projection

4. REFERENCES

1. 2010 Travel Demand Forecast Model Development and Calibration Report, Southern New Hampshire Planning Commission, 2012.
2. 2015 Population Estimates of New Hampshire Cities and Towns, The New Hampshire Office of Strategic Initiatives (NHOSI), 2016.
3. Model Validation and Reasonableness Checking Manual, Travel Model Improvement Program, 2001.
4. I-93 Exit 4A Supplemental Draft Environmental Impact Statement Land Use Scenarios Report, Louis Berger, 2017.
5. State of New Hampshire County Population Projections, By Municipality, The New Hampshire Office of Strategic Initiatives (NHOSI) in Partnership with the State's Regional Planning Commissions, 2016
6. FY 2017 - FY 2040 Regional Transportation Plan for the Southern NH Planning Commission, Southern New Hampshire Planning Commission, 2017.

APPENDIX A STUDY AREA TAZ SPLIT

Projects Coded in the 2040 No-Build Model

Community ${ }^{1}$	Project	Project \#
BE	NH 101 - Widen NH 101 to 5 Lanes from NH 114 up to Wallace Rd	13953
BE	NH 101 - Widen NH 101 to 5 Lanes from Wallace Rd up to Amherst TL ${ }^{2}$	
BE	US 3 - Widen US 3 to 5 Lanes from Hawthorne Drive North to Manchester Airport Access Road	40664
BE-ME	F.E.E Turnpike - Improvement to Bedford Mainline Toll Plaza to Institute Open Road Tolling	16100
NA-ME-BE	F.E.E.Turnpike - Widen existing 2-Lane Sections of the Turnpike to a 3-Lane Typical From Exit 8 in Nashua to I-293 in Bedford	13761
CH	NH 102 - NH 102/North Pond Road Intersection Improvements.	
DE-LO	I-93-Construction of I-93 Exit 4A	13065
HO	US 3/NH 28 - Widen US 3/NH 28 to 5 Lanes from Martins Ferry Rd to West Alice Ave	29611
HO	US 3/NH 28 - Construct Southern Segment of US 3/NH 28 Alternate Bypass ${ }^{2}$	
HO	US 3/NH 28 - Construct Northern Segment of US3/NH28 Alternate Bypass ${ }^{2}$	
HO	Widen US3/NH28 to 5 Lanes from Legends Dr to Hunt Street ${ }^{2}$	
HO	Hackett Hill Road - Reconstruction intersection of NH 3A/Hackett Hill Road	14950
HO	NH 3A - Reconstruct and Widen from Commerce Road North to Goonan Rd.	24862
LO	NH 28 - Widening NH 28 from NH 128 to Page Rd.	
LO	NH 102 - Widen NH 102 to 4 Lanes from Hudson Town Line to NH 128^{2} - Lower Corridor	
LO	NH 102 - Widen NH 102 to 5 Lanes from I-93 East to Londonderry Road ${ }^{2}$ - Upper Corridor	
LO	NH 102 - Widen NH 102 to 6 Lanes from I-93 to NH 128^{2} - Central Corridor	
LO	Intersection Improvements at NH28/NH128 for Safety and Traffic Flow	
MA	I-293 - Reconstruction of Exit 4 on I-293	
MA	I-293-Reconstruct and Widening of Exit 6 (Amoskeag)	16099A
MA	I-293-Reconstruct Exit 7	16099B
SA-MA	I-93- Reconstruct and Widen Mainline, Environmental Impact Study and Final Design From Mass S/L in Salem to I-293 in Manchester. Capacity Improvements, Reconstruction, and Widening from North of Exit 3 to I-293	10418C
SA-MA	I-93 - NB \& SB Mainline Weigh Station to Kendall	14633B
SA-MA	I-93 - Exit 4 Ramps, NB \& SB Mainline, NH 102 Approach Work	14633D
SA-MA	I-93- NB \& SB Mainline, Exit 5 to I-293 Split (Londonderry \& Manchester)	14633H
SA-MA	I-93- NB \& SB Mainline, Exit 4 and 5 (Londonderry)	14633I
SA-MA	I-93-Exit 1 to Exit 5 - Construct 4th Lane Northbound and Southbound	14633J
SA-MA	I-93 - Final Design (PE) and ROW for I-93 Salem to Manchester	10418X
Windham	NH 111 - Corridor Improvements Within Town Center (Construction not in TYP)	40663
Windham	NH 28 - Intersection NH 28/Roulston Road Improvements	40665

Source: FY 2017-2020 Transportation Improvement Program, FY 2017-2026 Ten-Year Transportation Improvement Plan, and 2017-2040 SNHPC Regional Transportation Plan.
${ }^{1}$ BE=Bedford, $\mathrm{CH}=$ Chester, $\mathrm{DE}=$ Derry, $\mathrm{HO}=$ Hooksett, LO=Londonderry, MA=Manchester, NB=New Boston, RA=Raymond, SA=Salem, NA=Nashua
${ }^{2}$ These projects are taken from various studies and are part of the Regional Transportation Plan

Updated 10/21/2016

APPENDIX C 2015 BASE YEAR MODEL STUDY AREA CALIBRATION RESULTS

2015 Base Year Model Study Area Calibration Results

Location	A	B	Assign	Count	\% Diff
NH 28 N. of Liberty Dr.	589	3645	15,406	13,000	18.51
NH 102 at Derry Town line	594	3556	20,817	22,270	-6.52
NH 28 at Derry Town line	793	1621	19,392	17,454	11.10
Exit 5 SB Off ramp	999	3650	9,234	9,282	-0.52
Exit 4 SB On ramp	1003	1764	8,157	9,615	-15.16
Exit 4 NB Off ramp	1006	6519	10,389	9,843	5.55
Exit 5 NB Off ramp	1010	3652	4,430	5,601	-20.91
Gilcreast Rd. N. of NH 102	1334	3557	9,397	10,000	-6.03
Ash St. E. of Londonderry Rd.	1348	3555	5,950	6,900	-13.77
Ash St. at Londonderry Town line	1349	2125	5,936	6,765	-12.25
Exit 4 SB On ramp EB to SB	1767	1005	4,907	5,010	-2.06
Exit 4 SB On ramp WB to SB	1770	1004	3,637	4,648	-21.75
NH28 Bypass N. of Tsienneto Rd.	1838	1839	9,377	11,943	-21.49
NH28 Bypass N. of Academy Dr.	1839	3532	7,318	7,329	-0.15
NH28 Bypass S. of Thornton Rd.	1840	2143	12,015	13,981	-14.06
NH102 E. of NH 28 Bypass	1841	1878	7,017	7,329	-4.26
Crystal Ave. NH 28 S of Rollins	1860	1861	13,215	13,000	1.65
Crystal Ave. NH 28 S of Tsienneto	1862	1863	13,407	15,193	-11.76
Folsom Rd. W. of NH 28	1863	3483	8,960	11,672	-23.24
NH 102 E. of Griffin St.	1870	1871	18,002	16,400	9.77
NH 102 W. of Abbot St.	1876	1877	11,128	14,350	-22.45
Tsienneto Rd. W. of NH 102	1883	2082	5,666	5,393	5.06
Franklin St. Ext N. of Folsom Rd.	2106	3484	1,255	1,845	-31.98
Tsienneto Rd. E. of Pinkerton	2107	2108	14,200	14,636	-2.98
Pinkerton St. E. of Tsienneto	2107	2109	8,776	11,672	-24.81
Fordway over Beaver Brook	2135	2136	5,114	5,330	-4.05
NH102 E. of Hampton Dr.	3234	1766	30,419	32,000	-4.94
Exit 5 NB On ramp	3651	1011	9,101	9,341	-2.57
Exit 5 SB On ramp	3653	1000	3,919	5,503	-28.78
Exit 4 NB On ramp	6518	1007	9,550	10,045	-4.93

FHWA Targets

Upper Limit Lower Limit	
25	-25
25	-25
25	-25
29	-29
29	-29
29	-29
29	-29
25	-25
29	-29
29	-29
29	-29
36	-36
25	-25
29	-29
25	-25
29	-29
25	-25
25	-25
25	-25
25	-25
25	-25
29	-29
47	-47
25	-25
25	-25
29	-29
22	-22
29	-29
29	-29
25	-25
25	

Note: Traffic volumes were taken from NHDOT traffic count program, SNHPC traffic count program, and CLD|Fuss \& O'Neil traffic counts for the project.

APPENDIX D POPULATION PROJECTION ${ }^{[2][5]}$

Population Projection 2015-2040

Town	$\mathbf{2 0 1 5}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$
Auburn	5,315	5,560	5,828	5,959	6,033	6,048
Bedford	22,236	23,451	24,797	25,276	25,576	25,680
Candia	3,909	3,891	3,880	3,967	4,016	4,026
Chester	4,887	5,199	5,536	5,660	5,731	5,744
Deerfield	4,413	4,631	4,869	4,978	5,040	5,052
Derry	32,948	32,459	32,018	32,733	33,144	33,222
Francestown	1,562	1,576	1,597	1,628	1,647	1,654
Goffstown	17,846	18,051	18,335	18,689	18,911	18,988
Hooksett	14,473	15,403	16,508	17,089	17,532	17,823
Londonderry	24,891	25,434	26,057	26,639	26,973	27,036
Manchester	109,419	109,469	109,963	112,087	113,420	113,881
New Boston	5,457	5,818	6,214	6,334	6,409	6,435
Raymond	10,257	10,403	10,577	10,814	10,949	10,975
Weare	8,811	9,051	9,334	9,514	9,627	9,667
Windham	14,301	15,414	16,612	16,983	17,196	17,237
Total	$\mathbf{2 8 0 , 7 2 5}$	$\mathbf{2 8 5 , 8 1 0}$	$\mathbf{2 9 2 , 1 2 5}$	$\mathbf{2 9 8 , 3 5 0}$	$\mathbf{3 0 2 , 2 0 4}$	$\mathbf{3 0 3 , 4 6 8}$

Source: \quad New Hampshire Office of Strategic Initiatives.

APPENDIX E 2015 EMPLOYMENT AVERAGE

2015 Employment Average

Town	Q1	Q2	Q3	Q4	Average
Auburn	1,706	1,766	1,806	1,852	1,783
Bedford	15,223	15,487	15,446	15,617	15,443
Candia	673	820	865	818	794
Chester	364	371	349	376	365
Deerfield	384	454	437	411	422
Derry	8,123	8,240	7,806	8,251	8,105
Francestown	94	125	136	117	118
Goffstown	3,129	3,304	3,159	3,235	3,207
Hooksett	9,275	9,496	9,591	9,700	9,516
Londonderry	12,812	13,345	13,185	13,454	13,199
Manchester	67,548	68,384	68,349	69,812	68,523
New Boston	727	756	732	794	752
Raymond	2,965	3,051	2,902	3,074	2,998
Weare	1,764	1,852	1,762	1,836	1,804
Windham	3,428	3,534	3,463	3,689	3,529

Source: New Hampshire Department of Employment Security.

APPENDIX E: HCM 2010 LOS CRITERIA

HCM2010 HIGHWAY CAPACITY MANUAL

VDLUME 3: INTERRUPTED FLDW

URED TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

WASHINGTGN, DE I WWW TAF, OFE

 dathe ai varow pointsomp the frew

 apmity of in crital sedment.

LOS: COMPONENT SEGMENTS AND THE FREEWAY FACILITY

LOS of Component Segments

Chapters 11, 12, and 13 provide methotologes to determine the IOS in

 are peferme thens chaper.

 when the segmen io/cis greater than lind and (b) when a ghe from a kownstrean breahdownexterdsinto an upstrem stement. The hater carnot be
 mot 13.

 ways:

- When efsistmater than 1 on os
 or $43 \mathrm{pofm} / \mathrm{h}$ torweaving merge or tiverge segments.
 dowtotrembrokdomat.

LOS for a Freeway Facility

 besis of density
 compoment segment. The facilty los will be beres on the weighted averge

 Tsuntonthat

$$
\begin{aligned}
& \sum 1 \\
& \sum 1
\end{aligned}
$$

Equation 10.2
?

In F Wheth an whentifit).

Level of Service	Density (pc/mi/ln)
A	≤ 11
B	P11-18
C	$>18-25$
0	>26-35
E	- 35×45
F	245 or
	caponeft 4 icatio >1.00

 apt
 (blay

 13645ms.

Exhibit 10-7
tos Crter for formy fations

1s-3. The symbol whown in thisexhbit represens the wort tophase" whe the number Tolowing the symbet reperants the phase number.

Exhbit $10-3$ shows ont woty that thatic movements an be assigned to gach of the eight phases. These assigmments are illustrolive, but they are not uncommon. Each hefteturn monement is asigned to an exelusive phase During this phase, the teft-timn movement "protected" so that it rectives a green armot molicalion. Each though, right-turn, and pedestrion movement ombination is also assifged to an exclusive phane. The dashed arows indionte tum movements that areserved in a "permitted". manner so that the tum can be compheted onfy after yielding the rightot-way to conticting movements. Additional information about traflic signal controler opuration is provided in Chapter 3L, Signalized Intasections: Supplemental.

LOS CRITERYA

This subsection describes the LOS criteria for the automobile pedestrian, and bicycle modes. The criteria for the automobile mode are different from those for the nonatomobite modes, Specifatly, the autumobile-mode criteria are based on performance measures that are field measurable and perceivable by travelers. The criteria for the nonatumobils modes are based on scores reported by travelers indicating their perception of service quatity

Automobile Mode

TOS can be characterized for the matim intersedion, ench intersection appoach, and each hone group. Control deloy ahone is used to characterize LOS for the entire intersction or an approadf, Control delay and volume to copacity Falio are used to characterize 10 for a hane group. Detay quantifes the incrase in trovel time due to traffic sigmal controh. It is also a surrogate measure of driver tisomfort and fuef consumption. The whume-to-gacity ratio quantifies the degree to which a phase's capacity is ullized by a bne gromp The following paragrophs describesen LOS.

LOS A describes operations with a control delay th $10 \mathrm{~s} / \mathrm{yeh}$ or less and a volumerto-capacity ratio no freater than 10 . This levet is typhally assigned when the voltme-th-apacily ration how and either progression is exceptomaly

Exhibit 18-3
Dual-Ring Structure with Hustative Movement Assignmants

Alt uses of the word "volumes" of the phrase "valume-io-gapacity ratio" in this chapter refer to demand volume of demond volume to caparity rotio.

 moticowbe.

A hate group can incur a delay hes than st sheth when the whme-to-

 a signafine materserthon.

Control Delay ($5 / \mathrm{veh}$)	LOS by Volume-to Capacity Ratio?	
≤ 10	A.	F
$\therefore>10-20$	B	F
>20-35	C	F
> 35×5	D	F
>55-80	E	F
>80	F	F

1. INTRODUCTION

 Ang for TWSC intersedions.
 underatanting of the interaction butween fovelers on the minor, of stan-

 Wherbed in this thapter rety promaty on hed measumment of TWSC.
 muded fretoped and retmed in Germany (2).

INTERSECTION ANALYSIS BOUNDARIES AND TRAVEL MODES

 fotersethans, with the exception of TWSC intersetions that are homed within

LEVEL-OF-SERVICE CRITERIA

The los criterin for TVSC interections are sonewnot diferent trom the

19. TWSC Intersections

Thre-ting intersextons anc considered a standard type of THEC mersection, when the stem of the J is controlted by a moy sigh

105 ss no tether for the major. street approdhes or for the overatf introrsection, as major-strect though wehicles ate assumed to Expuriepae no ditas.

Exhibit 19-1
Lever of Servie Criteria:
Autonobile Mote

Exthibit 19-2
Level-of-Service Criteria:
Pegestrian Mode

Control Delay	LoS by Volume-to-Capacity Ratio	
(s/vehicte)	$v / c \leq 1.0$	$v / C>1.0$
Q-10	A	F
$\bigcirc 10-15$	8	F
>15-25	c	f
25-35.	D	F
-35-50	E	F
>50	F	F

Los	Control Detay (s/pedestrian)	Comments
A	0-5	Usuaty no monficting traffic
B	5-10	Occasionally sorse delay due to contlicting traffic
C	10 m 20	Delay noticeabte to pedestrians, but not inconveniencing
D	29-30	Defay noticebte and is ritating, increased thelithod of risk taking
E	30-45	Delay approaches toderance teved, risk-taking betavior likely
F	>45	Delay exceeds tolerance tevel, high ifetihood of pedestran risk taking

LOS For petestrims whes when there ate not condeh gaps of subable sive

REQUIRED INPUT DATA

3. Whar wif the following

 Fownother for host

 storage (ar both),

1. INTRODUCTION

Chapter 21, Roundabouts, presents comeptemd procedmestor andyang

 hargely fonded on that staty's reommembtions. These prowedures allow the Amaly to assess the operational perfomano of an existing or plamed westane or two-hme roundabont given maffe demand levels.

INTERSECTION ANALYSIS BOUNDARIES AND TRAVEL MODES

The andytical procedure presented in thes chapter assumes that the analysis bombtariss are the roundabout itself, inchathg asociated pedestran crusswalks. Alternatice touls discussed in this chapter can, in some coses, expond the analysis boundaries to inchate adpaent intersections. The methodology prosented here includes discussion of motor vehicter, podestrians, ant beycles.

LEVEL OF SERVICE CRITERIA

The level of service (LOS) eriteria for atombbiles in romdabouts are given In Exhbit 21-1. As the table motes, LOS 年 is assigned th the volume-to-copacity ratio of a bane exceds 1.0 regandess of the controldeday. For assessment of 105 at the approath and intersection levels, LOS is based solely on control detay,

The thesholds in Exhibit $21-1$ are based on the considered judgment or the Tansporlation Reseach Board Commilew on Hohway Capacily and Qually of Service. As discussed hater in this chapler, romedabots share the same basis: control deday formetation with wo-way and all-way sur-controlled

 Was avabobe on traveler perteption of ghatity of service at retindatombs It the
 comsistent with those tor other magnalized intersectens, primarily on the basts of this siminar control day formutation.

Control Delay	105 by Volume-to-Capacity Ratio ${ }^{*}$	
(s/ven)	$v / c \leq 1.0$	$v / c>2.0$
0-10	A	F
$>10-15$	B	F
>15-25	C	F
>25-35.	D	F
>35-50	E	F
$\bigcirc 50$	F	F


```
    \ddots:% !,\mp@code{!}
```



```
    &": :!
21. Roundabouts
```



```
    %-\cdots;
```

Exhibit 21-1
LOS Criteria: Attomoble Mode

APPENDIX F: HCS 2010 FREEWAY FACILITY ANALYSES - 2015 BASE

Segment Identification Listing

Northbound Direction

Segment 1 - Basic - I-93 Mainline south of Exit 4
Segment 2 - Diverge - Exit 4 NB off-ramp
Segment 3 - Basic - I-93 Mainline between Exit 4 ramps
Segment 4 - Merge - Exit 4 NB on-ramp
Segment 5 - Basic - I-93 Mainline between Exit 4 NB on- and Exit 5 NB offramps
Segment 6 - Diverge - Exit 5 NB off-ramp
Segment 7 - Basic - I-93 Mainline between Exit 5 ramps
Segment 8 - Merge - Exit 5 NB on-ramp
Segment 9 - Basic - I-93 Mainline north of Exit 5

Southbound Direction

Segment 1 - Basic - I-93 Mainline north of Exit 5
Segment 2 - Diverge - Exit 5 SB off-ramp
Segment 3 - Basic - I-93 Mainline between Exit 5 ramps
Segment 4 - Merge - Exit 5 SB on-ramp
Segment 5 - Basic - I-93 Mainline between Exit 5 SB on- and Exit 4 SB off-ramps
Segment 6 - Diverge - Exit 4 SB off-ramp
Segment 7 - Basic - I-93 Mainline between Exit 4 SB off- and SB on ramp from east
Segment 8 - Merge - Exit 4 SB on-ramp from east
Segment 9 - Basic - I-93 Mainline between Exit 4 SB on-ramps
Segment 10 - Merge - Exit 4 SB on-ramp from west
Segment 11 - Basic - I-93 Mainline south of Exit 4

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - NB
Analysis Year	2015 Base - AM	Date	$5 / 1 / 2017$
Project Description	I-93 - from S. of Exit 4 to N of Exit S		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	9
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$a->b$	5280	2
2	Diverge	Diverge	b.->c	1500	2
3	Basic	Basic	$c->d$	2575	2
4	Merge	Merge	d->e	1500	2
5	Basic	Basic	e->f	13225	2
6	Diverge	Diverge	$f \rightarrow \mathrm{~g}$	1500	2
7	Basic	Basic	$g->h$	4100	2
8	Merge	Merge	$h->i$	1500	2
9	Basic	Basic	i->j	5280	2

Facility Segment Data

Segment 1: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
1	1.00		0.979		2022		4700		0.43		65.0		15.6		B
2	1.00		0.979		2022		4700		0.43		65.0		15.6		B
3	1.00		0.979		2022		4700		0.43		65.0		15.6		B
4	1.00		0.979		2022		4700		0.43		65.0		15.6		8
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B
2	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B
3	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B
4	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	8

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi / h)	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.984	1596	4700	0.34	65.0	12.3	B
2	1.00	0.984	1596	4700	0.34	65.0	12.3	B
3	1.00	0.984	1596	4700	0.34	65.0	12.3	B
4	1.00	0.984	1596	4700	0.34	65.0	12.3	8

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B
2	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B
3	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B
4	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	8

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc / h)	Capacity (pc / h)	d/c Ratio	Speed (mi/h)	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.973	2703	4700	0.58	65.0	20.8	C
2	1.00	0.973	2703	4700	0.58	65.0	20.8	C
3	1.00	0.973	2703	4700	0.58	65.0	20.8	C
4	1.00	0.973	2703	4700	0.58	65.0	20.8	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C
2	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C
3	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C
4	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate ($\mathbf{p c / h}$)	Capacity ($\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density (pc/mi/ln)	LOS
1	1.00	0.976	2275	4700	0.48	65.0	17.5	
2	1.00	0.976	2275	4700	0.48	65.0	17.5	B
3	1.00	0.976	2275	4700	0.48	65.0	8	
4	1.00	0.976	2275	4700	0.48	65.0	17.5	17.5

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C
2	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	c

3	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C
4	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C

Segment 9: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c / h})$	Capacity ($\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	$\mathbf{L O S}$
1	1.00	0.983	3255	4700	0.69	64.3	25.3	
2	1.00	0.983	3255	4700	0.69	64.3	C	
3	1.00	0.983	3255	4700	0.69	64.3	25.3	
4	1.00	0.983	3255	4700	0.69	64.3	25.3	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	63.2	20.3	19.8	6.6	C
2	63.2	20.3	19.8	6.6	C
3	63.2	20.3	19.8	6.6	C
4	63.2	20.3	19.8	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	63.2	Density, veh/mi/ln	19.8
Average Travel Time, min	6.6		
Copyright 0 2017 University of Flocida. All Rights Reserved. \quad HCS 2010 Fachities Version 6.90			

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	2015 - Base AM (3 pgs)	Date	$5 / 1 / 2017$
Project Description	$1-93$ SB - from N of Exit 5 to S of Exit 4		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	11
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$a->b$	5280	2
2	Diverge	Diverge	$b->c$	1500	2
3	Basic	Basic	$c->d$	3920	2
4	Merge	Merge	d->e	1500	2
5	Basic	Basic	e->f	11980	2
6	Diverge	Diverge	$f->\mathrm{g}$	1500	2
7	Basic	Basic	g->h	1600	2
8	Merge	Merge	h->i	1500	2
9	Basic	Basic	i->j	900	2
10	Merge	Merge	$j->k$	1500	2
11	Basic	Basic	$1->m$	5230	2

Facility Segment Data

Segment 1: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate (pc/h)	Capacity ($\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed ($\mathbf{m i} / \mathbf{h})$	Density (pc/mi/ln)	LOS
1	1.00	0.980	3321	4700	0.71	64.0	25.9	C
2	1.00	0.980	3321	4700	0.71	64.0	25.9	C
3	1.00	0.980	3321	4700	0.71	64.0	25.9	C
4	1.00	0.980	3321	4700	0.71	64.0	25.9	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.971	3321	783	4700	2000	0.71	0.39	53.5	53.5	31.0	28.1	D
2	1.00	1.00	0.980	0.971	3321	783	4700	2000	0.71	0.39	53.5	53.5	31.0	28.1	D
3	1.00	1.00	0.980	0.971	3321	783	4700	2000	0.71	0.39	53.5	53.5	31.0	28.1	D

4	1.00 1.00	0.980 0.971	3321 783	4700 2000	0.71 0.39	53.5×53.5	31.0 28.1	D
Segment 3: Basic								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi / h)	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.983	2538	4700	0.54	65.0	19.5	C
2	1.00	0.983	2538	4700	0.54	65.0	19.5	C
3	1.00	0.983	2538	4700	0.54	65.0	19.5	C
4	1.00	0.983	2538	4700	0.54	65.0	19.5	C

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C
2	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C
3	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C
4	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.983	3062	4700	0.65	64.8	23.6	C
2	1.00	0.983	3062	4700	0.65	64.8	23.6	C
3	1.00	0.983	3062	4700	0.65	64.8	23.6	C
4	1.00	0.983	3062	4700	0.65	64.8	23.6	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C
2	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C
3	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C
4	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate ($\mathbf{p c} / \mathbf{h}$)	Capacity ($\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density (pc/mi/ln)	LOS
1	1.00	0.987	2285	4700	0.49	65.0	17.6	8
2	1.00	0.987	2285	4700	0.49	65.0	17.6	8
3	1.00	0.987	2285	4700	0.49	65.0	17.6	8
4	1.00	0.987	2285	4700	0.49	65.0	17.6	B

Segment 8: Merge

Time Period	PHF	fHV	Flow Rate $(\mathrm{pc} / \mathrm{h})$	Capacity $(\mathrm{pc} / \mathrm{h})$	d / c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	LOS

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.985	0.980	2820	531	4700	2000	0.60	0.27	58.2	58.2	24.2	17.8	B
2	1.00	1.00	0.985	0.980	2820	531	4700	2000	0.60	0.27	58.2	58.2	24.2	17.8	8
3	1.00	1.00	0.985	0.980	2820	531	4700	2000	0.60	0.27	58.2	58.2	24.2	17.8	8
4	1.00	1.00	0.985	0.980	2820	531	4700	2000	0.60	0.27	58.2	58.2	24.2	17.8	B

Segment 9: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate (pc/h)	Capacity ($\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	1.00	0.985	2817	4700	0.60	65.0	21.7	C
2	1.00	0.985	2817	4700	0.60	65.0	21.7	C
3	1.00	0.985	2817	4700	0.60	65.0	21.7	C
4	1.00	0.985	2817	4700	0.60	65.0	21.7	C

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C
2	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C
3	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C
4	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C

Segment 11: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.984	3496	4700	0.74	63.3	27.6	
2	1.00	0.984	3496	4700	0.74	63.3	D	
3	1.00	0.984	3496	4700	0.74	63.3	27.6	27.6
4	1.00	0.984	3496	4700	0.74	63.3	D	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, $\mathbf{p c} / \mathbf{m i} / \mathbf{l n}$	Density, veh/mi/ln	Travel Time, min	LOS
1	62.5	24.8	24.4	6.6	C
2	62.5	24.8	24.4	6.6	C
3	62.5	24.8	24.4	6.6	C
4	62.5	24.8	24.4	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	62.5	Density, veh/mi/ln	24.4
Average Travel Time, min	6.6		

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	2015 PM Peak - NB
Analysis Year	2015-Base PM (3 pgs)	Date	5/1/2017
Project Description			

Facility Global Input

Jam Density, pc/mi//n	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	9
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	2
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	2
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	2575	2
4	Merge	Merge	$\mathrm{d}>\mathrm{e}$	$\mathrm{e}->\mathrm{f}$	1500
5	Basic	Basic	$\mathrm{f} \rightarrow>\mathrm{g}$	13225	2
6	Diverge	Diverge	$\mathrm{g} \gg \mathrm{h}$	1500	2
7	Basic	Basic	$\mathrm{h} \rightarrow>\mathrm{i}$	4100	2
8	Merge	Merge	Basic		1500
9	Basic		5280	2	

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	1.00	0.979	3483	4700	0.74	63.3	27.5	D
2	1.00	0.979	3483	4700	0.74	63.3	27.5	D
3	1.00	0.979	3483	4700	0.74	63.3	27.5	D
4	1.00	0.979	3483	4700	0.74	63.3	27.5	D

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C
2	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C
3	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C
4	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate (pc / h)	Capacity (pc / h)	d/c Ratio	Speed (mi/h)	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.971	2291	4700	0.49	65.0	17.6	B
2	1.00	0.971	2291	4700	0.49	65.0	17.6	B
3	1.00	0.971	2291	4700	0.49	65.0	17.6	B
4	1.00	0.971	2291	4700	0.49	65.0	17.6	B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C
2	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C
3	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C
4	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C

Segment 5: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate ($\mathbf{p c} / \mathrm{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.977	3086	4700	0.66	64.7	23.8	C
2	1.00	0.977	3086	4700	0.66	64.7	23.8	C
3	1.00	0.977	3086	4700	0.66	64.7	23.8	C
4	1.00	0.977	3086	4700	0.66	64.7	23.8	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C
2	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C
3	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C
4	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS
1	1.00	0.978	2612	4700	0.56	65.0	20.1	C
2	1.00	0.978	2612	4700	0.56	65.0	20.1	C
3	1.00	0.978	2612	4700	0.56	65.0	20.1	C
4	1.00	0.978	2612	4700	0.56	65.0	20.1	C

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C

2	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C
3	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C
4	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	1.00	0.983	3383	4700	0.72	63.8	26.5	D
2	1.00	0.983	3383	4700	0.72	63.8	26.5	D
3	1.00	0.983	3383	4700	0.72	63.8	26.5	D
4	1.00	0.983	3383	4700	0.72	63.8	26.5	D

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	62.7	24.9	24.4	6.6	C
2	62.7	24.9	24.4	6.6	C
3	62.7	24.9	24.4	6.6	C
4	62.7	24.9	24.4	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	62.7	Density, veh/mi/ln	24.4
Average Travel Time, min	6.6		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	2015 PM Peak - S8
Analysis Year	2015 Base - PM (3 pgs)	Date	$5 / 1 / 2017$
Project Description	193 SB - from N of Exit S to S of Exit 4		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	11
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	a->b	5280	2
2	Diverge	Diverge	$b->c$	1500	2
3	Basic	Basic	$c \rightarrow$ d	3920	2
4	Merge	Merge	d->e	1500	2
5	Basic	Basic	e->f	11980	2
6	Diverge	Diverge	$f->\mathrm{g}$	1500	2
7	Basic	Basic	$g->h$	1600	2
8	Merge	Merge	h->i	1500	2
9	Basic	Basic	i->j	900	2
10	Merge	Merge	$j \gg k$	1500	2
11	Basic	Basic	l->m	5230	2

Facility Segment Data

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density (pc/mi/ln)	LOS
1	1.00	0.980	3434	4700	0.73	63.6	27.0	D
2	1.00	0.980	3434	4700	0.73	63.6	27.0	D
3	1.00	0.980	3434	4700	0.73	63.6	27.0	D
4	1.00	0.980	3434	4700	0.73	63.6	27.0	D

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.980	3434	929	4700	2000	0.73	0.46	53.2	53.2	32.3	29.1	D
2	1.00	1.00	0.980	0.980	3434	929	4700	2000	0.73	0.46	53.2	53.2	32.3	29.1	D
3	1.00	1.00	0.980	0.980	3434	929	4700	2000	0.73	0.46	53.2	53.2	32.3	29.1	D

4	1.00 1.00	0.980 0.980	3434 929	4700 2000	0.73 0.46	53.2 53.2	32.3 29.1	D
Segment 3: Basic								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi / h)	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.980	2505	4700	0.53	65.0	19.3	C
2	1.00	0.980	2505	4700	0.53	65.0	19.3	C
3	1.00	0.980	2505	4700	0.53	65.0	19.3	C
4	1.00	0.980	2505	4700	0.53	65.0	19.3	C

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.977	2930	425	4700	2100	0.62	0.20	57.8	57.8	25.3	22.6	C
2	1.00	1.00	0.980	0.977	2930	425	4700	2100	0.62	0.20	57.8	57.8	25.3	22.6	C
3	1.00	1.00	0.980	0.819	3012	507	4700	2100	0.64	0.24	57.6	57.6	26.1	23.2	C
4	1.00	1.00	0.980	0.977	2930	425	4700	2100	0.62	0.20	57.8	57.8	25.3	22.6	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	d/c Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	1.00	0.980	2929	4700	0.62	64.9	22.6	
2	1.00	0.980	2929	4700	0.62	64.9	C	
3	1.00	0.980	2929	4700	0.62	64.9	C	
4	1.00	0.980	2929	4700	0.62	64.9	22.6	22.6

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C
2	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C
3	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C
4	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{n})$	LOS
1	1.00	0.978	1989	4700	0.42	65.0	15.3	B
2	1.00	0.978	1989	4700	0.42	65.0	15.3	B
3	1.00	0.978	1989	4700	0.42	65.0	15.3	B
4	1.00	0.978	1989	4700	0.42	65.0	15.3	B

Segment 8: Merge

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	LOS

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B
2	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	8
3	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B
4	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	1.00	0.978	2209	4700	0.47	65.0	17.0	8
2	1.00	0.978	2209	4700	0.47	65.0	17.0	8
3	1.00	0.978	2209	4700	0.47	65.0	17.0	8
4	1.00	0.978	2209	4700	0.47	65.0	17.0	8

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	8
2	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B
3	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B
4	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	1.00	0.978	2515	4700	0.54	65.0	19.4	
2	1.00	0.978	2515	4700	0.54	65.0	C	
3	1.00	0.978	2515	4700	0.54	65.0	19.4	C
4	1.00	0.978	2515	4700	0.54	65.0	19.4	19.4

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	62.8	22.5	22.1	6.6	C
2	62.8	22.5	22.1	6.6	C
3	62.8	22.6	22.1	6.6	C
4	62.8	22.5	22.1	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	62.8	Density, veh/mi/ln	22.1
Average Travel Time, min	6.6		
Copyright 02017 University of Flonida. All Rights Reserved \quad HCS 2010 Facilites Version 6.90			
Base PM-S8.xff			

APPENDIX G-1: HCM AND SYNCHRO PRINTOUTS SIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 AM PEAK HOURS - SYNCHRO PRINTOUTS

4A Zone $27: 30$ am 8/3/2016 Existing 2015 AM Peak

Intersection Summary

Area Type: Other
Cyde Length: 100
Actuated Cycle Length: 100
Offset 0 (0\%), Referenced to phase 2:EBWB, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.75
Intersection Signal Delay: 12.8
Intersection LOS: B
Intersection Capacity Utifzation 58.3\%
ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: Exit 4 SB Off

	1	1	\cdots	\downarrow	3	\ngtr	จ	\downarrow	\checkmark	k	
Lane Group	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR	30.aci
Lane Configurations	7\%	7			${ }^{7}$	个个			$4 \uparrow$	\%	
Traffic Volume (vph)	210	200	0	0	585	590	0	0	875	0	
Future Volume (vph)	210	200	0	0	585	590	0	0	875	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0	0	0	350		0	0		0	
Storage Lanes	2	1	0	0	1		0	0		1	
Taper Length (ft)	25		25		25			25		1	
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frt		0.850									
Fit Protected	0.950				0.950						
Satd. Flow (prot)	3242	1495	0	0	1719	3438	0	0	3505	1845	
Fit Permitted	0.950				0.950						
Satd. Flow (perm)	3242	1495	0	0	1719	3438	0	0	3505	1845	
Right Turn on Red		Yes					Yes			Yes	
Satd. Flow (RTOR)		227									
Link Speed (mph)	25		30			30			30		
Link Distance (ft)	347		390			494			346		
Travel Time (s)	9.5		8.9			11.2			7.9		
Peak Hour Factor	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92	
Heary Vehicles (\%)	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%	
Adj. Flow (vph)	239	227	0	0	622	628	0	0	951	0	
Shared Lane Traffic (\%)										0	
Lane Group Flow (vph)	239	227	0	0	622	628	0	0	951	0	
Turn Type	Prot	Free			Prot	NA			NA	Free	
Protected Phases	2				7	4			8		
Permitted Phases		Free								Free	
Detector Phase Switch Phase	2				7	4			8		
Minimum Inital (s)	10.0				5.0	10.0			10.0		
Minimum Split (s)	46.0				11.0	46.0			46.0		
Total Split (s)	31.0				35.0	69.0			34.0		
Total Split (\%)	31.0\%				35.0\%	69.0\%			34.0\%		
Maximum Green (s)	25.0				29.0	63.0			28.0		
Yellow Time (s)	4.0				4.0	4.0			4.0		
All-Red Time (s)	20				2.0	2.0			2.0		
Lost Time Adjust (s)	0.0				0.0	0.0			0.0		
Total Lost Time (s)	6.0				6.0	6.0			6.0		
Lead/lag					Lead				Lag		
Lead-Lag Optimize? Vehicle Extension (s)	3.0										
Recal Mode	C.Min				None	Min			3.0 Min		
Wak Time (s)	7.0					7.0			7.0		
Flash Dont Walk (s)	11.0					11.0			11.0		
Pedestrian Calls (\#\#tr)	0					0			0		
Act Effict Green (s)	12.9	100.0			41.1	75.1			28.0		
Actuated g/C Ratio	0.13	1.00			0.41	0.75			0.28		
$v i c$ Ratio	0.57	0.15			0.88	0.24			0.97		
Control Delay	46.2	0.2			43.8	4.3			58.7		
Queue Delay	0.0	0.0			0.0	0.0			0.0		
4A Zone 27:30 am 8/3/20 LC	xisting 20	15 AM Pe									9 Report Page 1

	1	\%	\checkmark		\bar{y}	π	\downarrow	\downarrow	4	k
Lane Group	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Total Delay	46.2	0.2			43.8	4.3			58.7	
LOS	D	A			D	A			E	
Approach Delay	23.8					23.9			58.7	
Approach LOS	C					C			E	
Queue Length 50th (fi)	75	0			357	52			315	
Queue Length 95th (ti)	107	0			\#610	83			\#448	
Internal Link Dist (t)	267		310			414			266	
Turn Bay Length (t)					350					
Base Capacity (vph)	810	1495			706	2582			981	
Stavation Cap Reductn	0	0			0	0			0	
Spillback Cap Reductn	0	0			0	0			0	
Storage Cap Reductn	0	0			0	0			0	
Reduced vic Ratio	0.30	0.15			0.88	0.24			0.97	
Intersection Summary										
Area Type: Other										
Cyde Length: 100										
Actuated Cycle Length: 100										
Offset $0(0 \%)$, Referenced to phase 2:NBL and 6: Start of Green										
Natural Cycle: 145										
Control Type: Actuated-Coorcinated										
Maximum vic Rato: 0.97										
Intersection Signal Delay: 36.3				Intersection LOS: D						
Intersection Capacity Utilization 84.6\%				ICU Level of Service E						
Analysis Period (min) 15										
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.										

Splits and Phases: 11: Exit 4 NB Off \& NH 102

	4	\rightarrow	\checkmark	\checkmark	\leftarrow	4	4	\uparrow	ν	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	S8T	SBR
Lane Configurations		¢ \uparrow	\#	${ }^{*}$	¢个					\%*		7
Traffic Volume (vph)	0	515	280	235	605	0	0	0	0	465	0	295
Future Volume (vph)	0	515	280	235	605	0	0	0	0	465	0	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Fit			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			304									123
Link Speed (mph)		30			30			30			35	
Link Distance (t)		410			242			486			444	
Travel Time (s)		9.3			5.5			11.0			8.6	
Peak Hour Factor	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Heary Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Adj. Flow (vph)	0	560	304	322	829	0	0	0	0	628	0	399
Shared Lane Traffic (\%)												
Lane Group Flow (yph)	0	560	304	322	829	0	0	0	0	628	0	399
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protecled Phases		2		1	6					4		4
Permited Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial (s)		5.0		4.0	5.0					3.0		3.0
Minimum Split (s)		26.0		24.0	26.0					36.0		36.0
Total Split (s)		24.0		22.0	46.0					34.0		34.0
Total Split (\%)		30.0\%		27.5\%	57.5\%					42.5\%		42.5\%
Maximum Green (s)		18.0		16.0	40.0					28.0		28.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
LeadLag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s)		3.0		3.0	3.0					3.0		3.0
Recal Mode		C.Max		None	C-Max					None		None
Walk Time (s)		7.0		7.0	7.0					7.0		7.0
Flash Dont Walk (s)		11.0		11.0	11.0					11.0		11.0
Pedestrian Calls (\#/hr)		0		0	0					0		0
Act Efftet Green (s)		20.9	80.0	$18.8{ }^{\text {. }}$	45.7					22.3		223
Actuated g/C Ratio		0.26	1.00	0.24	0.57					0.28		0.28
vic Ratio		0.68	0.21	0.81	0.43					0.68		0.78
Control Delay		32.7	0.3	40.0	7.0					29.2		28.7
Queve Delay		0.0	0.0	0.0	0.0					0.0		0.0
Total Delay		32.7	0.3	40.0	7.0					29.2		28.7
LOS		C	A	D	A					C		C
Approach Delay		21.3			16.3						29.0	

	\rangle	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p		\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		C			B						C	
Queue Length 50\% (fi)		139	0	87	46					142		127
Queue Length 95th (f)		\#212	0	\#211	59					138		146
Internal Link Dist (f)		330			162			406			364	
Turn Bay Length (fi)												
Base Capacity (vph)		828	1417	396	1929					1156		613
Starvation Cap Reductn		0	0	0	0					0		0
Spilback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					-		0
Reduced vic Rasio		0.68	0.21	0.81	0.43					0.54		0.65

Intersection Summary	
Area Type:	
Other	

Cycie Length: 80
Actuated Cycle Length: 80
Offset $38(48 \%)$, Referenced to phase $2:$ EBT and $6:$ WBT. Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.81
Intersection Signal Delay. 22.0 Intersection LOS: C
Intersection Capaaty Ublization 65.7\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queve may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: $\quad 3:$ Exit 5 S8 On/Exit 5 SB Off \& NH 28

	\rangle	\rightarrow	\checkmark	\checkmark	\longleftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	9	$4 \uparrow$			$\uparrow \uparrow$	7	${ }^{*}$		*			
Traffic Volume (vph)	240	740	0	0	540	740	300	0	110	0	0	0
Future Volume (yph)	240	740	0	0	540	740	300	0	110	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
Fil Protected	0.950						0.950					
Sald. Flow (prot)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Fil Permitted	0.950						0.950					
Satd. Flow (perm)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						822			205			
Link Speed (mph)		30			30			35			30	
Link Distance (ft)		196			451			450			368	
Travel Time (s)		4.5			10.3			8.8			8.4	
Peak Hour Factor	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Adj. Flow (yph)	276	851	0	0	600	822	385	0	141		0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	276	851	0	0	600	822	385	0	141	0	0	0
Turn Type	Prot	NA			NA	Free	Prot		Free			0
Protected Phases	5	2			6		8					
Permitted Phases		2			6	Free			Free			
Detector Phase	5	2			6		8					
Switch Phase												
Minimum Intital (s)	5.0	5.0			5.0		5.0					
Minimum Split (s)	24.0	24.0			24.0		11.0					
Total Split (s)	22.0	51.0			29.0		29.0					
Total Split (\%)	27.5\%	63.8\%			36.3\%		36.3\%					
Maximum Green (s)	16.0	45.0			23.0		23.0					
Yellow Time (s)	4.0	4.0			4.0		4.0					
All-Red Time (s)	2.0	2.0			2.0		2.0					
Lost Time Adjust (s)	0.0	0.0			0.0		0.0					
Total Lost Time (s)	6.0	6.0			6.0		6.0					
Leadlag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0			3.0		3.0					
Recall Mode	None	C-Max			C-Max		None					
Walk Time (s)	7.0	7.0			7.0							
Flash Dont Walk (s)	11.0	11.0			11.0							
Pedestrian Calls (\#frr)	0	0			0							
Act Effl Green (s)	15.7	46.6			24.9	80.0	21.4		80.0			
Actuated g/C Ratio	0.20	0.58			0.31	1.00	0.27		1.00			
vic Ratio	0.86	0.44			0.56	0.53	0.87		0.10			
Control Delay	55.0	22			26.1	1.3	49.4		0.1			
Queve Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	55.0	2.2			26.1	1.3	49.4		0.1			
LOS	D	A			C	A	D		A			
Approach Delay		15.1			11.8			36.2				

	\Rightarrow	\rightarrow		\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	S8T	SBR
Approach LOS		B			B			D				
Queue Length 50th (ft)	130	0			135	0	178		0			
Queue Length 95th (f)	\#251	5			189	0	233		0			
Internal Link Dist (tt)		116			371			370			288	
Turn Bay Length (f)												
Base Capacity (vph)	333	1913			1071	1538	476		1482			
Starvation Cap Reductn	0	0			0	0	0		0			
Spilback Cap Reductr	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced vic Ratio	0.83	0.44			0.56	0.53	0.81		0.10			

Intersection Summary

Cycle Length: 80
Actuated Cycle Length: 80
Offset $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.87
Intersection Signal Delay: 17.2 Intersection LOS: B
Intersection Capacity Ubilization 65.7\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shomn is maximum after two cycles.
Spits and Phases: 2: Exit 5 NB Off \& NH 28

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			F			4	
Traffic Volume (vph)	5	25	10	345	0	70	0	400	125	15	595	0
Future Volume (yph)	5	25	10	345	0	70	0	400	125	15	595	0
Ideal Flow (yphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Uti. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.966			0.977			0.968				
Fll Protected		0.994			0.960						0.999	
Satd. Flow (prot)	0	1789	0	0	1730	0	0	1703	0	0	1808	0
Filt Permitted		0.937			0.716						0.981	
Satd. Flow (perm)	0	1686	0	0	1290	0	0	1703	0	0	1775	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			55			36				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		285			644			243			338	
Travel Time (s)		6.5			14.6			5.5			7.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.88	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	8	42	17	359	0	73	0	449	140	17	692	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	67	0	0	432	0	0	589	0	0	709	0
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2			2						1		
Detector Phase	2	2		2	2			1		1	1	
Switch Phase												
Minimum Inital (s)	5.0	5.0		5.0	5.0			5.0		5.0	. 0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	25.0	25.0		25.0	25.0			35.0		35.0	35.0	
Total Split (\%)	41.7\%	41.7\%		41.7\%	41.7\%			58.3\%		58.3\%	58.3\%	
Maximum Green (s)	19.0	19.0		19.0	19.0			29.0		29.0	29.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	20	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/lag	Lag	Lag		Lag	Lag			Lead		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	None	None		None	None			Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#hr)	0	0		0	0			0		0	0	
Act Effict Green (s)		19.1			19.1			27.3			27.3	
Actuated glC Rato		0.33			0.33			0.47			0.47	
vic Ratio		0.12			0.94			0.72			0.86	
Control Delay		12.4			51.7			17.7			26.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.4			51.7			17.7			26.4	
LOS		B			D			B			c	
Approach Delay		12.4			51.7			17.7			26.4	

	\cdots	\backslash	λ	m	k	\%	5	\not	2	4	4	k
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		8			D			8			C	
Queve Length 50th (f)		13			135			145			206	
Queue Length 95th (f)		22			\#304			247			\#368	
Internal Link Dist (f)		205			564			163			258	
Turn Bay Length (t)												
Base Capacity (vph)		562			458			856			884	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced vic Ratio		0.12			0.94			0.68			0.80	
Intersection Summary												

Area Type: Other
Cycle Length: 60
Actuated Cyde Length: 58.4
Natural Cyde: 70
Control Type: Actuated-Uncoorcinated
Maximum wic Ratio: 0.94
Intersection Signal Delay: 29.1
Intersection LOS C
Intersection Capacity Utízation 83.4\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: NH 102 \& FordwayN. High St

	\dagger			t	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	S8T	SBR
Lane Configuratons	7	ち		\%	¢		${ }^{5}$	¢		7	\uparrow	¢
Traffic Volume (vph)	105	205	60	35	385	80	60	260	40	70	230	105
Future Volume (vph)	105	205	60	35	385	80	60	260	40	70	230	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.966			0.974			0.980				0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1656	1684	0	1703	1746	0	1719	1773	0	1703	1792	1524
Fit Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1656	1684	0	1703	1746	0	1719	1773	0	1703	1792	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			14			O				205
Link Speed (mph)		30			30			30			30	
Link Distance (ti)		505			530			361			411	
Travel Time (s)		11.5			12.0			8.2			9.3	
Peak Hour Factor	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Adj. Flow (voh)	109	214	63	37	410	85	71	306	47	77	253	115
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	109	277	0	37	495	0	71	353	0	77	253	115
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												4
Detector Phase	5	2		1	6		3	8		7	4	4
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0		4.0	10.0		4.0	9.0	9.0
Minimum Spit (s)	10.0	30.0		10.0	30.0		10.0	25.0		10.0	25.0	25.0
Total Spit (s)	12.0	33.0		12.0	33.0		10.0	25.0		10.0	25.0	25.0
Total Spit (\%)	15.0\%	41.3\%		15.0\%	41.3\%		12.5\%	31.3\%		12.5\%	31.3\%	31.3\%
Maximum Green (s)	6.0	27.0		6.0	27.0		4.0	19.0		4.0	19.0	19.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/ag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Min		None	Mn		Min	None		Min	None	None
Wak Time (s)		7.0			7.0			7.0			7.0	7.0
Flash Dont Wak (s)		11.0			11.0			11.0			11.0	11.0
Pedestrian Calls (\#hr)		10			10			0	-		10	10
Act Effct Green (s)	6.0	29.4		5.9	24.1		4.0	17.5		4.0	17.5	17.5
Actuated g/C Ratio	0.08	0.39		0.08	0.32		0.05	0.23		0.05	0.23	0.23
vic Ratio	0.83	0.42		0.28	0.88		0.79	0.85		0.86	0.61	0.23
Control Delay	83.0	20.1		40.6	42.7		90.6	48.3		103.4	33.9	1.1
Queve Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	83.0	20.1		40.6	42.7		90.6	48.3		103.4	33.9	1.1
LOS	F	C		D	D		F	D		F	C	A

	\dagger	\rightarrow	\rangle	\checkmark	-	4	4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR.	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		37.8			42.6			55.4			37.4	
Approach LOS		D			D			E			D	
Queue Length 50th (t)	55	99		18	218		36	164		39	113	0
Queue Length 95th (f)	\#148	170		47	\#385		\#101	\#274		\#121	188	2
Turn Bay Length (ft) 331												
Base Capacity (vph)	132	663		135	634		90	453		90	452	537
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced vic Ratio	0.83	0.42		0.27	0.78		0.79	0.78		0.86	0.56	0.21

Intersection Summary
Area Type: Other
Cycle Length: 80
Actuated Cyde Length: 75.9
Natural Cycie: 80
Control Type: Actuated-Uncoordinated
Maximum vic Ratio: 0.88
Intersection Signal Delay: 43.3
Intersection LOS: D
Intersection Capacity Utifization 70.9\%
ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Spits and Phases: 23: Birch SUCrystal Ave \& NH 102 (E Broadway)

	\cdots	\uparrow	1	\cdots	\downarrow	ل	4	π	\downarrow	1	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	个个	\＃	凩	$\uparrow \uparrow$	1	\％	\uparrow	F	\dagger	\uparrow	＊
Trafic Volume（vph）	20	230	135	310	220	145	135	170	20	125	290	370
Future Volume（vph）	20	230	135	310	220	145	135	170	20	125	290	370
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（it）	150		150	0		0	0		0	0		0
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length（ft）	25			25			25			25		
Lane Uul．Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850			0.850			0.850			0.850
Fil Protected	0.950			0.950			0.950			0.950		
Sald．Flow（prot）	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
Fil Permitted	0.950			0.950			0.950			0.950		
Sald．Flow（perm）	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
Right Tum on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			255			184			327			259
Link Speed（mph）		30			30			30			30	
Link Distance（ t ）		639			394			532			387	
Travel Time（s）		14.5			9.0			12.1			8.8	
Peak Hour Factor	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.88	0.99	0.99	0.99
Heary Vehicles（\％）	4\％	4\％	4\％	5\％	5\％	5\％	3\％	3\％	3\％	3\％	3\％	3\％
Adj．Flow（vph）	24	274	161	392	278	184	157	198	23	126	293	374
Shared Lane Traffic（\％）												
Lane Group Flow（yph）	24	274	161	392	278	184	157	198	23	126	293	374
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Free	Prot	NA	ptov
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2		6	6		4	Free		8	
Detector Pnase	5	2	2	1	6	6	7	4		3	8	81
Switch Prase												
Minimum Initial（s）	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0		7.0	8.0	
Minimum Split（s）	14.0	31.0	31.0	14.0	40.0	40.0	12.0	21.0		13.0	21.0	
Total Split（s）	14.0	31.0	31.0	23.0	40.0	40.0	15.0	21.0		15.0	21.0	
Total Split（\％）	15．6\％	34．4\％	34．4\％	25．6\％	44．4\％	44．4\％	16．7\％	23．3\％		16．7\％	23．3\％	
Maximum Green（s）	8.0	25.0	25.0	17.0	34.0	34.0	9.0	15.0		9.0	15.0	
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All－Red Time（s）	2.0	2.0	2.0	2.0	20	2.0	2.0	20		2.0	2.0	
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time（s）	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead／lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Leg		Lead	Lag	
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	C－Max	C－Max	None	Max	Max	None	None		None	None	
Walk Time（s）	5.0	5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk（s）	11.0	11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls（\＃hr）	0	0	0		0	0		0			0	
Act Efft Green（s）	8.0	26.8	26.8	15.2	34.0	34.0	9.0	15.3	90.0	8.7	15.0	36.2
Actuated g／C Ratio	0.09	0.30	0.30	0.17	0.38	0.38	0.10	0.17	1.00	0.10	0.17	0.40
vic Ratio	0.16	0.27	0.25	0.70	0.21	0.26	0.90	0.63	0.01	0.74	0.95	0.48
Control Delay	40.5	25.5	1.2	42.0	19.5	4.1	88.0	45.1	0.0	66.1	80.3	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	\cdots	\uparrow	\dagger	\cdots	\downarrow	\downarrow	4	\nearrow	\downarrow	\dagger	\checkmark	ψ
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	40.5	25.5	1.2	42.0	19.5	4.1	88.0	45.1	0.0	66.1	80.3	8.0
LOS	D	c	A	D	B	A	F	D	A	E	F	A
Approach Delay		17.8			26.5			60.2			44.0	
Approach LOS		B			C			E			D	
Queue Length 50th (f)	13	63	0	107	55	0	90	106	0	71	167	40
Queue Length 95th (ft)	35	90	0	131	72	27	\#191	169	0	\#157	\#323	108
Internal Link Dist (ft)		559			314			452			307	
Turn Bay Length (t)	150		150									
Base Capacity (vph)	154	1032	641	629	1298	695	175	312	1568	175		
Starvasion Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	-	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	O	0	0	0	0	0	0	0	0	0
Reduced vic Ratio	0.16	0.27	0.25	0.62	0.21	0.26	0.90	0.63	0.01	0.72	0.95	0.46
Intersection Summay												

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 0 (0\%). Referenced to phase 2NBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum w/c Ratio: 0.95
Intersection Signal Delay: 35.6
Intersection Capacity Utilzation 58.3\%

Intersection LOS: D
ICU Level of Service B

Analysis Period (min) 15
\# 95th percentle volume exceeds capacity, queue may be longer.
Queve shown is maximum after two cycles.
Splits and Phases: 15: Folsom Rd/Tsienneto Rd \& Crystal AviNH 28

Lane Group	$\begin{aligned} & S_{B} \\ & E B L \\ & \hline \end{aligned}$	$\xrightarrow[\text { EBT }]{\rightarrow}$	7 EBR		WBT	WBR		$\underset{\text { NET }}{ }$	$\xrightarrow{7}$		4	4
					WBT	WER	NEL	NET	NER	SWL	SWT	SWR
Lane Confgurations	\%	个t		${ }^{*}$	个t			\uparrow	7		\uparrow	*
Traffic Volume (vph)	50	790	0	0	655	30	5	0	5	50	d	245
Future Volume (vph)	50	790	0	0	655	30	5	0	5	50	0	245
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	75		0	150		150	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (ft)	50			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.993				0.850			0.850
Fil Protected	0.950							0.950			0.950	
Satd. Flow (prot)	1687	3374	0	1863	3514	0	0	1805	1615	0	1787	1599
Fll Permitted	0.950							0.720			0.751	
Satd. Flow (perm)	1687	3374	0	1863	3514	0	0	1368	1615	0	1413	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Sald. Flow (RTOR)					6				109			227
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		277			755			218			433	
Travel Time (s)		6.3			17.2			5.0			9.8	
Peak Hour Factor	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	60	952	0	0	712	33	10	0	10	56	0	272
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	60	952	0	0	745	0	0	10	10	0	56	272
Tum Type	Prot	NA		Prot	NA		custom	NA	custom	Perm	NA	Perm
Protected Phases	5	2		1	6						4	
Permitted Phases					6		8	8	8	4		4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Spit (\%)	15.6\%	51.1\%		12.2\%	47.8\%		36.7\%	35.7\%	36.7%	36.7\%	36.7\%	36.7\%
Maximum Green (s)	8.0	40.0		5.0	37.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recal Mode	None	C-Max		None	None		None	None	None	None	None	None
Act Effet Green (s)	9.2	67.7			55.2			10.3	10.3		10.3	10.3
Actuated gic Raso	0.10	0.75			0.61			0.11	0.11		0.11	0.11
vic Ratio	0.35	0.38			0.35			0.06	0.04		0.35	0.71
Control Delay	42.8	4.9			12.9			33.0	0.2		40.6	18.9
Queue Delay	0.0	0.0			0.0			0.0	0.0		0.0	0.0
Total Delay	42.8	4.9			12.9			33.0	0.2		40.6	18.9
LOS	D	A			B			C	A		D	B
Approach Delay		7.1			129			16.6			22.6	

Area Type: Other
Cyde Length: 90
Actuated Cycle Length: 90
Offset $63(70 \%)$, Referenced to phase 2:EBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Ccordinated
Maximum vic Rato: 0.71
Intersection Signal Delay: 11.7
Intersection LOS: B
Intersection Capacity Utilization 53.4\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 6: ApplebeesLinlew Dr \& NH 28

	EBL	$\overrightarrow{S B}$	EBR	WBL		N	4	$\begin{array}{r}\uparrow \\ \hline 8\end{array}$	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	VBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuratons	${ }^{17}$	个t		\％	个t		\％	な		${ }_{1}$	\uparrow	「
Traffic Volume（vph）	100	630	5	5	610	220	10	5	5	180	${ }^{4}$	100
Future Volume（vph）	100	630	5	5	610	220	10	5	5	180	5	100
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	150		150	150		150				0		150
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length（fi）	200			25			25			25		
Lane Ufil．Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.999			0.960			0.925				0.850
Flit Protected	0.950			0.950			0.950			0.950	0.955	
Satd．Flow（prot）	3303	3402	0	1736	3332	0	1805	1758	0	1665	1674	1568
Flt Permitted	0.950			0.950			0.950			0.950	0.955	
Satd．Flow（perm）	3303	3402	0	1736	3332	0	1805	1758	0	1665	1674	1568
Right Tum on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		1			79			7				111
Link Speed（mph）		30			30			30			30	
Link Distance（th）		412			486			151			343	
Travel Time（s）		9.4			11.0			3.4			7.8	
Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Heavy Vehides（\％）	6\％	6\％	6\％	4\％	4\％	4\％	0\％	0\％	0\％	3\％	3\％	3\％
Adj．Flow（vph）	120	759	6	5	629	227	15	＋	7	200	6	111
Shared Lane Traffic（\％）										49\％		
Lane Group Flow（vph）	120	765	0	5	856	0	15	14	0	102	104	111
Turn Type	Prot	NA		Prot	NA		Split	NA		Splt	NA	ptoov
Protected Phases	5	2		1	6		3	3		，	4	45
Permitted Phases								3				
Detector Phase Switch Pnase	5	2		1	6		3	3		4	4	45
Minimum initial（s）	5.0	8.0		5.0	8.0		5.0	5.0		8.0	8.0	
Minimum Solit（s）	14.0	53.0		11.0	50.0		11.0	11.0		15.0	15.0	
Total Split（s）	14.0	53.0		11.0	50.0		11.0	11.0		15.0	15.0	
Total Split（\％）	15．6\％	58．9\％		12．2\％	55．6\％		12．2\％	12．2\％		16．7\％	16．7\％	
Maximum Green（s）	8.0	47.0		5.0	44.0		5.0	5.0		9.0	9.0	
Yellow Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All－Red Time（s）	2.0	20		2.0	20		2.0	20		2.0	2.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead／ag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead－Lag Optimize？	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehide Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Min		None	C．Min		None	None		None	None	
Walk Time（s）		5.0			5.0		5.0	5.0		5.0	5.0	．
Flash Dont Walk（s）		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Cals（\＃／hr）		0			0		0	0		0	．	
Act Effict Green（s）	8.0	57.4		5.6	45.5		6.3	6.3		10.7	10.7	24.7
Actuated g／C Ratio	0.09	0.64		0.06	0.51		0.07	0.07		0.12	0.12	0.27
vic Ratio	0.41	0.35		0.05	0.50		0.12	0.11		0.52	0.53	0.22
Control Delay	42.9	10.3		61.6	10.1		40.8	30.0		46.5	46.7	6.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset $0(0 \%)$, Referenced to phase 6:WBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.53
Intersection Signal Delay: 15.9
Intersection LOS: B
Intersection Capacity Utilization 54.8\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percenble queue is metered by upstream signal.
Splits and Phases: $\quad 9:$ VIP Dr/Ashleigh Dr \& NH 28

Lane Group	NBL	NBT	NBR	S8L	S8T	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	\dagger		${ }^{*}$	\uparrow	$\overline{7}$	\%	\dagger		\%	今	
Traffic Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Future Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (f)	150		150	150		150	150		150	150		150
Storage Lanes	1		,	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.988				0.850		0.933			0.963	
Fil Protected	0.950			0.950			0.950			0.950		
Sald. Flow (prot)	1752	1823	0	1736	1827	1553	1770	1738	0	1787	1812	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1823	0	1736	1827	1553	1770	1738	0	1787	1812	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		5				202		48			20	
Link Speed (mph)		30			30			30			30	
Link Distance (t)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Heary Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2%	1\%	1\%	1\%
Adj. Flow (vph)	122	268	24	31	259	315	176	147	118	103	346	115
Shared Lane Traffic (\%)												
Lane Group Flow (yph)	122	292	0	31	259	315	176	265	0	103	461	0
Tum Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protecled Phases	1	6		5	2	23	3	.		7	4	
Permitled Phases												
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Prase												
Mnimum lnitial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	20.0		14.0	20.0	
Total Solit (s)	14.0	24.0		14.0	24.0		15.0	26.0		16.0	27.0	
Total Split (\%)	17.5\%	30.0\%		17.5\%	30.0\%		18.8\%	32.5\%		20.0\%	33.8\%	
Maximum Green (s)	8.0	18.0		8.0	18.0		9.0	20.0		10.0	21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Al-Red Time (s)	2.0	2.0		2.0	2.0		2.0	20		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Leadhag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehide Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Act Effl Green (s)	8.0	26.5		8.0	18.1	33.1	9.0	23.4		9.2	20.9	
Actuated g/C Ratio	0.10	0.33		0.10	0.23	0.41	0.11	0.29		0.12	0.26	
vic Ratio	0.70	0.48		0.18	0.63	0.41	0.88	0.49		0.50	0.95	
Control Delay	57.5	26.8		35.8	35.7	7.9	77.5	24.2		41.9	59.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	57.5	26.8		35.8	35.7	7.9	77.5	24.2		41.9	59.4	
LOS	E	C		D	D	A	E	c		D	E	
Approach Delay		35.9			21.2			45.5			56.2	

	\#	\uparrow	1	\cdots	\downarrow	\}	4	\not	\downarrow	\downarrow	4	4
Lane Group	NBL	NBT	NBR	S8L	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		D			C			D			E	
Queve Length 50th (ft)	60	99		15	117	35	88	94		49	217	
Queue Length 95th (ft)	\#119	193		36	171	71	\#126	114		82	\#309	
Internal Link Dist (ft)		401			267			399			291	
Tum Bay Length (ft)	150			150		150	150			150		
Base Capacity (yph)	175	607		173	414	761	199	543		223	490	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0			0	0	0	0		0		
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced vic Ratio	0.70	0.48		0.18	0.63	0.41	0.88	0.49		0.46	0.94	

ntersection Summary

```
Area Type:
```


Other

Cycle Length: 80
Acluated Cycle Length: 80
Offset: 0 (0\%), Referenced to phase 2:S8T, Start of Green
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.95
Intersection Signal Delay: 39.2
Intersection Capacity Utiization 65.8%
Intersection LOS: D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splts and Phases: \quad 1: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N

APPENDIX G-2: HCM AND SYNCHRO PRINTOUTS - SIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 PM PEAK HOURS SYNCHRO PRINTOUTS

	$\Rightarrow \rightarrow$	\leftarrow	$\pm \downarrow$	\downarrow		
Lane Group	E8L EBT	WBT	WBR SBL	SER	69	
Approach LOS	8	A	E			
Queue Length 50th (ti)	186	15	214	-392		
Queue Length 95th (ti)	230	18	317	\#630		
Internal Link Dist (tt)	237	186	351			
Turn Bay Length (ti)						
Base Capacity (yph)	2323	2323	438	650		
Starvation Cap Reductn	0	0	0	0		
Spilback Cap Reducth	0	0	0	0		
Storage Cap Reductn	0	0	0	0		
Reduced vic Ratio	0.44	0.41	0.69	1.08		

Intersection Summary

```
Area Type:
    Other
```

Cycle Length: 120
Actuated Cycle Length: 120
Offset $0(0 \%)$, Referenced to phase 2:EBWB, Start of Green
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum vic Ratio: 1.08
Intersection Signal Delay: $28.5 \quad$ Intersection LOS: C
Intersection Capacity Utifzation 73.4\% ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoreticaly infinite.
Queve shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queve shown is maximum after two cycles.

Solits and Phases: 7: NH $102 \&$ Exit 4 S8 Off

$\stackrel{H}{\leftrightarrows}$		f8
		26 s

	9	\cdots	1	\cdots	\downarrow	\%	\triangle	\downarrow	\downarrow	4	\cdots
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	714		F			\%	¢ \uparrow			个4	\%
Traffic Volume (vph)	580	0	605	0	0	475	740	0	0	485	0
Future Volume (vph)	580	0	605	0	0	475	740	0	O	485	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fit			0.850								
Fit Protected	0.950					0.950					
Satd. Flow (prot)	3467	0	1599	0	0	1770	3539	0	0	3539	1863
Fit Permitted	0.950					0.950					
Satd. Flow (perm)	3467	0	1599	0	0	1770	3539	0	0	3539	1863
Right Turn on Red			Yes					Yes			Yes
Satd. Flow (RTOR)			499								
Link Speed (mph)		25		30			30			30	
Link Distance (f)		347		390			361			346	
Travel Time (s)		9.5		8.9			8.2			7.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96	0.87	0.87	0.87
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	630	0	658	0	0	495	771	0	0	557	0
Shared Lane Traffic (\%)											
Lane Group Flow (yph)	630	0	658	0	0	495	771	0	0	557	0
Turn Type	Prot		Free			Prot	NA			NA	Free
Protected Phases	2					7	4			8	
Permitted Phases			Free				7				Free
Detector Phase	2					7	4			8	
Switch Phase											
Minimum Initial (s)	5.0					5.0	10.0			10.0	
Minimum Split (s)	9.5					9.5	66.0			66.0	
Total Split (s)	38.0					44.0	82.0			38.0	
Total Split (\%)	31.7\%					36.7\%	68.3\%			31.7\%	
Maximum Green (s)	33.5					39.5	76.0			32.0	
Yellow Time (s)	3.5					3.5	4.0			4.0	
All-Red Time (s)	1.0					1.0	20			20	
Lost Time Acjust (s)	0.0					0.0	0.0			0.0	
Total Lost Time (s)	4.5					4.5	6.0			6.0	
LeadLag						Lead				Lag	
Lead-Lag Optimize?						Yes				Yes	
Vehicle Extension (s)	3.0					3.0	3.0			3.0	
Recall Mode	C-Max					None	None			None	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							11.0			11.0	
Pedestrian Calls (\#hr)							0			0	
Act Effict Green (s)	43.4		120.0		,	36.7	66.1			24.9	
Actuated g/C Ratio	0.36		1.00			0.31	0.55			0.21	
vic Ratio	0.50		0.41			0.91	0.40			0.76	
Control Delay	33.3		0.8			62.3	19.5			51.5	
Queue Delay	0.0		0.0			0.0	0.0			0.0	
Total Delay	33.3		0.8			62.3	19.5			51.5	
LOS	C		A			E	B			D	
Approach Delay		16.7					36.2			51.5	

	\cdots	1	7	\cdots	\}	y	π	\uparrow	\downarrow	\checkmark	k
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		8					D			D	
Queue Length 50it (ft)	202		0			374	200			215	
Queue Length 95ih (ti)	281		0			\#548	242			250	
Internal Link Dist (ft)		267		310			281			266	
Turn Bay Length (ft)											
Base Capacity (yph)	1253		1599			582	2241			943	
Starvation Cap Reductn	0		0			0	0			0	
Spillback Cap Reductn	0		0			0	,			0	
Storage Cap Reductn	0		0			0	0			0	
Reduced vic Ratio	0.50		0.41			0.85	0.34			0.59	

Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6: Start of Green
Natural Cycle: 135
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.91
Intersection Signal Delay: 30.9 Intersection LOS: C
Intersection Capacity Ubiliza5ion 68.4\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile wolume exceeds capacity, queve may be longer.
Queue shown is maximum after two cydes.

Splits and Phases: 11: Exit 4 NB Off \& NH 102

	3	\rightarrow	∇	\checkmark	\longleftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	VBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 \uparrow	1	\%	44					\%*		\%
Traffic Votume (vph)	0	650	280	135	490	0	0	0	0	645	0	265
Future Volume (vph)	0	650	280	135	490	0	0	O	0	645	0	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (f)	-		0	500		0	0		0	100		0
Storage Lanes	0		1	1		0	0		0	2		1
Taper Length (9)	25			30			25			25		
Lane Uell. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Fft			0.850									0.850
Fll Protected				0.950						0.950		
Satd. Flow (prot)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Flt Permitted				0.950						0.950		
Sald. Flow (perm)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			322									276
Link Speed (mph)		30			30			30			35	
Link Distance (t)		410			699			485			444	
Travel Time (s)		9.3			15.9			11.0			8.6	
Peak Hour Factor	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	2\%	2\%	2\%	4\%	4\%	4\%
Ad. Flow (vph)	0	747	322	157	570	0	0	0	0	709	0	291
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	747	322	157	570	0	0	0	0	709	0	291
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Prases		2		1	6					4		4
Permitted Phases			Free		1							
Delector Phase		2		1	6					4		4
Switch Phase												
Minimum Inital (s)		5.0		4.0	5.0					3.0		3.0
Minimum Spit (s)		41.0		10.0	41.0					36.0		36.0
Total Split (s)		36.0		24.0	60.0					40.0		40.0
Total Split (\%)		36.0\%		24.0\%	60.0\%					40.0\%		40.0\%
Maximum Green (s)		30.0		18.0	54.0					34.0		34.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
Al-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s) Leadhag		6.0		6.0	6.0					6.0		6.0
Lead/Lag Lag Ootimize?		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Vehide Extension (s)		4.0		4.0	4.0					4.0		4.0
Recall Mode		C.Min		None	C-Min					None		None
Walk Time (s)		7.0			7.0					7.0		7.0
Flash Dont Walk (s) Pedestrian Calls (\#hr)		11.0			11.0					11.0		11.0
Pedestrian Calls (\#/hr) Act Effict Green (s)		0 38.4	100.0		0 592					0 288		0
Actuated g/C Ratio		0.38	1.00	0.15	59.2 0.59					28.8 0.29		28.8
wic Ratio		0.56	0.21	0.62	0.28					0.73		0.45
Control Delay		27.8	0.3	45.3	4.8					36.5		6.2
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0

Intersection Summary
Area Type: Other
Cycle Length: 100
Actuated Cycle Length: 100
Offset $48(48 \%)$, Referenced to phase 2:EBT and $6: W B T$, Start of Green
Natural Cycle: 90
Control Type: Actualed-Coordinated
Maximum vic Rato: 0.73
Intersection Signal Delay: 20.9
Intersection LOS: C
Intersection Capacity Utiliza5on 58.8\% ICU Level of Service B
Analysis Period (min) 15
Spits and Phases: 3 : NH 28 \& Exit 5 SB Off

Intersection Summary
Area Type: Other
Cycle Length: 100
Actuated Cycle Length: 100
Offset: $0(0 \%)$, Referenced to phase 2EBT and 6.WBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.77
Intersection Signal Delay: $21.4 \quad$ Intersection LOS: C
Intersection Capacity Utilization 58.8\% ICU Level of Service 8
Analysis Period (min) 15
Splits and Phases: 2: Exit 5 NB Off \& NH 28

Lane Group	$\begin{aligned} & \text { G } \\ & \text { SB } \\ & \text { SEL } \end{aligned}$	λ SET) SER	$m_{N B} k$			VEB NEL	NET			SWT	
				NWL	NWT							
Lane Configurations		¢			4			F			\uparrow	
Traffic Volume (vph)	15	50	5	230	0	100	0	760	150	15	415	0
Future Volume (vph)	15	50	5	230	0	100	0	760	150	15	415	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.990			0.959			0.978				
Fit Protected		0.989			0.966						0.998	
Satd. Flow (prot)	0	1842	0	0	1743	0	0	1822	0	0	1841	0
Flt Permitted		0.902			0.740						0.620	
Satd. Flow (perm)	0	1680	0	0	1335	0	0	1822	0	0	1144	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			55			24				
Link Speed (mph)		30			30			30			30	
Link Distance (fi)		170			373			245			336	
Travel Time (s)		3.9			8.5			5.6			7.6	
Peak Hour Factor	0.83	0.83	0.83	0.98	0.98	0.98	0.95	0.95	0.95	0.89	0.89	0.89
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	2\%	2\%	2\%	3\%	3\%	3\%
Adj. Flow (yph)	18	60	6	235	0	102	0	800	158	17	466	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	84	0	0	337	0	0	958	0	0	483	0
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2			2						1		
Detector Phase	2	2		2	2			1		1	1	
Switch Phase												
Minimum Inital (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	24.0	24.0		24.0	24.0			36.0		36.0	36.0	
Total Split (\%)	40.0\%	40.0\%		40.0\%	40.0\%			60.0\%		60.0%	60.0\%	
Maximum Green (s)	18.0	18.0		18.0	18.0			30.0		30.0	30.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
LeadLag	Lag	Lag		Lag	Lag			Lead		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	Min	Mn		Min	Min			None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#hr)	0	0		0	0			,		0	0	
Act Efft Green (s)		15.8			15.8			30.1			30.1	
Actuated g/C Ratio		0.27			0.27			0.52			0.52	
vic Ratio		0.18			0.84			1.00			0.81	
Control Delay		15.9			36.6			47.1			26.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		15.9			36.6			47.1			26.8	
LOS		B			D			D			c	
Approach Delay		15.9			36.6			47.1			26.8	

	\cdots	2	\cdots	k	π		λ	7	4	\checkmark	k
Lane Group	SEL SET	SER	NWL	NWT	NVR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS	8			D			D			C	
Queue Length 50th (t)	21			91			-382			140	
Queve Length 95th (t)	45			\#215			\# 499			\#306	
Internal Link Dist (ti)	90			293			165			256	
Turn Bay Length (t)											
Base Capacity (vph)	528			454			959			595	
Starvation Cap Reductn	0			0			0			0	
Spillback Cap Reductn	0			0			0			0	
Storage Cap Reductn	0			0			0			0	
Reduced vic Ratio	0.16			0.74			1.00			0.81	

Intersection Summary	
Area Type:	Other

Cycle Length: 60
Actuated Cycle Length: 57.9
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: $38.5 \quad$ Intersection LOS: D
Intersection Capacity Utiization 95.4\% ICU Level or Service F
Analysis Period (min) 15

- Volume exceeds capacity, queue is theoreticaly infinite. Queue shown is maximum after two cycles.
\# 95th percentle volume exceeds capacity, queue may be longer.
Queue shown is maximum ater two cycles.
Solits and Phases: 4: NH 102 \& FordwayN. High St

	\cdots	\uparrow	1	W	\downarrow	ل	$\mathcal{E}_{\text {E }}$	\ngtr	\uparrow	$\boldsymbol{f}_{w / s}$	4	ϑ
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Confgurations	7	ち		\％	\uparrow	＊	\dagger	ち		＊	今	
Traffic Volume（vph）	70	295	35	135	340	150	135	410	40	75	250	65
Future Volume（voh）	70	295	35	135	340	150	135	410	40	75	250	65
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.984				0.850		0.987			0.969	
Fit Protected	0.950			0.950			0.950			0.950		
Sald．Flow（prot）	1752	1815	0	1752	1845	1568	1787	1857	0	1787	1823	0
Fit Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1752	1815	0	1752	1845	1568	1787	1857	0	1787	1823	0
Right Tum on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		7				161		6			15	
Link Speed（mph）		30			30			30			30	
Link Distance（t）		361			411			477			530	
Travel Time（s）		8.2			9.3			10.8			12.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehides（\％）	3\％	3\％	3\％	3\％	3\％	3\％	1\％	1\％	1\％	1\％	1\％	1\％
Adj．Flow（yph）	77	324	38	145	366	161	142	432	42	80	266	69
Shared Lane Traffic（\％）												
Lane Group Flow（yph）	77	362	0	145	366	161	142	474	0	80	335	0
Turn Type	Prot	NA		Prot	NA	pm＋ov	Prot	NA		Prot	NA	
Protected Phases	3	8		7	4	5	5	2		1	6	
Permitted Phases						4						
Detector Phase	3	8		7	4	5	5	2		1	6	
Switch Phase												
Minimum Initiol（s）	4.0	5.0		4.0	10.0	4.0	4.0	10.0		4.0	9.0	
Minimum Spit（s）	17.0	24.0		11.0	24.0	16.0	16.0	24.0		11.0	24.0	
Total Split（s）	17.0	27.0		15.0	25.0	16.0	16.0	32.0		11.0	27.0	
Total Split（\％）	20．0\％	31．8\％		17．6\％	29．4\％	18．8\％	18．8\％	37．6\％		12．9\％	31．8\％	
Maximum Green（s）	11.0	21.0		9.0	19.0	10.0	10.0	26.0		5.0	21.0	
Yelow Time（s）	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All－Red Time（s）	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time（s）	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead／ag	Lead	Lag		Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead－Lag Opoimize？	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Vehicle Extension（s）	3.0	3.0		3.0	3.0	3.0	30	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C－Max		None	None	
Act Effer Green（s）	8.8	19.5		8.9	22.0	37.6	9.7	29.5		5.6	22.9	
Actuated gic Ratio	0.10	0.23		0.10	0.26	0.44	0.11	0.35		0.07	0.27	
vic Ratio	0.43	0.86		0.79	0.77	0.21	0.70	0.73		0.68	0.67	
Control Delay	42.5	51.3		67.9	43.3	3.5	55.8	34.2		69.5	35.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	42.5	51.3		67.9	43.3	3.5	55.8	34.2		69.5	35.1	
LOS	D	0		E	D	A	E	C		E	D	
Approach Delay		49.7			39.1			39.1			41.7	
Approach LOS		D			D			D			D	
Queve Length 50th（fi）	39	178		77	184	0	74	231		43	157	
Queve Length 95th（fi）	80	\＃316		\＃174	\＃346	35	\＃155	\＃393		\＃119	\＄272	

Cycle Length: 85
Actuated Cycle Length: 85
Offset: $0(0 \%)$, Referenced to phase 2 NET, Start of Green
Natural Syce: 85
Control Type: Actuated-Coordinated
Maximum wc e Ratio: 0.85
Intersection Signal Delay: $41.8 \quad$ Intersection LOS: 0
Intersection Capacity Utízation 87.5\% ICU Level of Service E
Analysis Period (min) 15

* 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.
Splits and Phases: 23: NH 102 (E Broadway) \& Birch SUCrystal Av

	4	4	\%	\cdots	\downarrow	\downarrow	$\stackrel{4}{e r}^{4}$	\not	\uparrow	$W_{W C}$	\checkmark	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	$\uparrow \uparrow$	¢	\% 11	\uparrow	\%	\%	\uparrow	7	\%	\uparrow	7
Traffic Volume (vph)	80	350	150	520	430	190	240	320	90	150	220	380
Future Volume (vph)	80	350	150	520	430	190	240	320	90	150	220	380
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (f)	150		150	0		0	0		,	0		0
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Sald Flow (prot)	1770	3539	1583	3433	1863	1583	1770	1863	1583	1787	1881	1599
Fit Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	3539	1583	3433	1863	1583	1770	1853	1583	1787	1881	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTCR)			256			202			199			142
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		639			394			532			387	
Travel Time (s)		14.5			9.0			12.1			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2%	2\%	2\%	2\%	1\%	1\%	1\%
Adj. Flow (vph)	87	391	163	553	457	202	250	333	94	158	232	400
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	87	391	163	553	457	202	250	333	94	158	232	400
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	pm+ov
Protected Phases	5	2		1	6		7	,		3	8	1
Permitted Phases			2			6			4			8
Detector Phase	5	2	2	1	6	6	7	4	,	3	8	1
Swich Phase												
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	15.0	25.0	25.0	35.0	45.0	45.0	14.0	40.0	40.0	15.0	25.0	35.0
Total Split (s)	15.0	25.0	25.0	35.0	45.0	45.0	25.0	40.0	40.0	15.0	25.0	35.0
Total Spit (\%)	13.0\%	21.7\%	21.7\%	30.4\%	39.1\%	39.1\%	21.7\%	34.8\%	34.8%	13.0\%	21.7\%	30.4\%
Maximum Green (s)	9.0	19.0	19.0	29.0	39.0	39.0	19.0	34.0	34.0	9.0	19.0	29.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	20	2.0	2.0	2.0	2.0	20	2.0	2.0	20	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/ag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recal Mode	None	C-Max	C.Max	None	None	None	None	None	None	None	None	None
Wakk Time (s)		5.0	5.0		5.0	5.0		5.0	5.0		5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (\#/hr)		0	0		0	0		0	0		0	
Act Effit Green (s)	9.8	29.4	29.4	24.3	44.0	44.0	18.4	28.3	28.3	9.0	18.9	49.2
Actuated g/C Ratio	0.09	0.26	0.26	0.21	0.38	0.38	0.16	0.25	0.25	0.08	0.16	0.43
vic Raso	0.58	0.43	0.27	0.76	0.64	0.28	0.89	0.73	0.17	1.14	0.75	0.52
Control Delay	66.6	40.0	1.1	49.7	35.6	4.8	78.7	49.0	0.7	165.5	60.7	16.4
Queve Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	4	\uparrow	$\%$	\cdots	\downarrow	\downarrow	\uparrow	\nearrow	\downarrow	1	\checkmark	4
Lane Group	NBL	NBT	NBR	S8L	SBT	S8R	NEL.	NET	NER	SWL	SWT	SWR
Total Delay	66.6	40.0	1.1	49.7	35.6	4.8	78.7	49.0	0.7	165.5	60.7	16.4
LOS	E	D	A	D	D	A	E	D	A	F	E	B
Approach Delay		33.7			36.9			53.3			59.2	
Approach LOS		C			D			D			E	
Queue Length 50th (ft)	62	130	0	199	284	0	182	224	0	~ 136	165	134
Queue Length 95th (fi)	\#134	198	0	248	419	51	\#324	310	0	\#273	241	190
Internal Link Dist (ti)		559			314			452			307	
Turn Bay Length (f)	150		150									
Base Capacity (vph)	153	905	595	865	712	730	292	550	608	139	392	824
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.43	0.27	0.64	0.64	0.28	0.86	0.61	0.15	1.14	0.59	0.49
Intersection Summary												

Area Type: Other

Cycle Length: 115
Actuated Cycle Length: 115
Offset: 0 (0\%), Referenced to phase 2:NBT, Start of Green
Natural Cycle: 115
Control Type: Actuated-Ccordinated
Maximum vic Ratio: 1.14
Intersection Signal Delay: $44.9 \quad$ Intersection LOS: D
Intersection Capacity Utilization 74.5\% ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queve is theoretically infnite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queve shown is maximum after two cycles.

6: Applebee's/Linlew Dr \& NH 28									Existing 2015 PM Peak 12/23/2016			
	\cdots	4	2	\cdots	k	$\%$		\cdots	74		\downarrow	c-
Lane Group	SEL	SET	SER	NML	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{*}$	个 ${ }_{\sim}^{\circ}$		\%	个\%			+	\%		\uparrow	\%
Traffic Volume (vph)	170	1400	5	20	855	80	15	10	15	45	10	215
Future Volume (vph)	170	1400	5	20	855	80	15	10	15	45	10	215
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.987				0.850		1.00	0.850
Fit Protected	0.950			0.950				0.971			0.961	0.850
Satd. Flow (prot)	1787	3571	0	1787	3528	0	0	1845	1615	0	1808	1599
Fit Permitted	0.950			0.950				0.774		0	0.747	1599
Satd. Flow (perm)	1787	3571	0	1787	3528	0	0	1471	1615	0	1405	1599
Right Turn on Red			Yes			Yes			Yes	0	1405	Yes
Sald. Flow (RTOR)		1			13				172			269
Link Speed (mph)		30			30			30			30	209
Link Distance (ft)		277			755			230			387	
Travel Time (s)		6.3			17.2			5.2			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.95	0.95	0.95	0.90	0.90	0.90	0.80	0.80	0.80
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	175	1443	5	21	900	84	17	11	17	56	13	269
Shared Lane Traffic (\%)									17	5	13	269
Lane Group Flow (vph)	175	1448	0	21	984	0	0	28	17	0	69	269
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8		Perm	4	Perm
Permitted Phases							8		8	4	4	4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase								8		4	4	4
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	26.0	63.0		11.0	48.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (s)	26.0	63.0		11.0	48.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (\%)	27.4\%	66.3\%		11.6\%	50.5\%		22.1\%	22.1\%	22.1\%	22.1\%	22.1\%	22.1\%
Maximum Green (s)	20.0	57.0		5.0	42.0		15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	15.0 4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/ag	Lead	Lag		Lead	Lag						6.0	6.0
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	30	
Recall Mode	None	C.Max		None	C-Max		None	None	None	None	None	None
Walk Time (s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	None
Flash Dont Walk (s)		11.0			11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (\#)hr)		0			0		0	0	0	0	0	0
Act Effct Green (s)	14.5	68.0		6.0	52.4			10.1	10.1		10.1	10.1
Actuated g/C Ratio	0.15	0.72		0.06	0.55			0.11	0.11		0.11	0.11
v/c Ratio	0.64	0.57		0.19	0.50			0.18	0.05		0.46	0.66
Control Delay	37.4	14.3		46.3	15.5			39.4	0.3		48.8	13.0
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	37.4	14.3		46.3	15.5			39.4	0.3		48.8	13.0
LOS	D	B		D	B			D	A		D	B
Approach Delay		16.8			16.2			24.7			20.3	B

Lanes, Volumes, Timings 6: Applebee's/Linlew Dr \& NH 28									Existing 2015 PM Peak			
	\cdots	\checkmark	λ	\cdots	k	\#	y	\not	3	4	4	k
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL.	SWT	SWR
Approach LOS		B			B			C			C	
Queue Length 50th (t)	104	284		12	179			16	0		40	0
Queve Length 95th (ft)	m125	437		36	296			40	0		69	43
Internal Link Dist (ft)		197			675			150			307	
Turn Bay Length (f)												
Base Capacity (vph)	376	2557		113	1951			232	399		221	479
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spilloack Cap Reductr	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced vic Ratio	0.47	0.57		0.19	0.50			0.12	0.04		0.31	0.56
Intersection Summary												
Area Type: Other												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset $69(73 \%)$, Referenced to phase 2:SET and 6:NWT, Start of Green												
Natural Cycle: 95												
Control Type: Actuated-Coordinated												
Maximum vic Rato: 0.66												
Intersection Signal Delay. 17.1				Intersection LOS: B								
Intersection Capacity Ubilization 67.7\%				ICU Level of Service C								
Analysis Period (min) 15												
m Volume for 95 th percentle queue is metered by upstream signal.												

Spits and Phases: 6: Applebee's/Linlew Dr \& NH 28

	7	$\overrightarrow{S B}$		\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\%	个t		${ }_{7}$	个 \uparrow		*	\dagger		${ }^{*}$	\uparrow	F
Traffic Volume (vph)	110	1095	5	5	800	260	40	10	10	345	5	135
Future Volume (vph)	110	1095	5	5	800	260	40	10	10	345	5	135
Ideal Flow (yphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	150		150	150		150	-		O			0
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length (t)	150			25			25			25		
Lane Util. Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.999			0.963			0.925				0.850
Fin Protected	0.950			0.950			0.950			0.950	0.954	
Sadd. Flow (prot)	3467	3571	0	1770	3408	0	1805	1758	0	1715	1722	1615
Fit Permitted	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (perm)	3467	3571	0	1770	3408	0	1805	1758	0	1715	1722	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			62			13				108
Link Speed (mph)		30			30			30			30	
Link Distance (t)		877			261			151			343	
Travel Time (s)		19.9			5.9			3.4			7.8	
Peak Hour Factor	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Heary Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	131	1304	6	6	889	289	51	13	13	401	6	157
Shared Lane Traffic (\%)										49\%		
Lane Group Flow (vph)	131	1310	0	6	1178	0	51	26	0	205	202	157
Tum Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pttov
Protecled Proses	5	2		1	6		3	3		4	4	45
Permitled Phases		2			6							
Detector Phase	5	2		1	6		3	3		4	4	45
Switch Phase												
Minimum Initial (s)	5.0	8.0		5.0	8.0		50	5.0		8.0	8.0	
Minimum Spit (s)	11.0	53.0		11.0	50.0		11.0	11.0		20.0	20.0	
Total Spit (s)	14.0	53.0		11.0	50.0		11.0	11.0		20.0	20.0	
Total Spit (\%)	14.7\%	55.8\%		11.6\%	52.6\%		11.6\%	11.6\%		21.1\%	21.1\%	
Maximum Green (s)	8.0	47.0		5.0	44.0		5.0	5.0		14.0	14.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Leadlag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead-Lag Opómize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C.Max		None	None		None	None		None	None	
Walk Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Cals (\#hr)		0			0		0	0		0	0	
Act Effct Green (s)	7.7	58.5		5.1	47.0		5.0	5.0		13.5	13.5	27.2
Actuated g/C Ratio	0.08	0.62		0.05	0.49		0.05	0.05		0.14	0.14	0.29
vic Ratio	0.47	0.60		0.06	0.69		0.54	0.25		0.84	0.83	0.29
Control Delay	47.4	14.0		65.0	14.8		65.2	34.5		69.2	67.0	10.9
Queve Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0

Lane Group	EBL	$\underset{\text { EBT }}{\overrightarrow{S B}}$	EBR WBL	\leftarrow NB WBT	WER	4	$\overbrace{\text { N }}^{4}$	p	SBL	\downarrow	\square
				WBT	WBR	NBL	NBT	NBR	SBL	SBT	SER
Total Delay	47.4	14.0	65.0	14.8		65.2	34.5		69.2	67.0	10.9
LOS	0	B	E	B		E	C		E	E	.
Approach Delay		17.1		15.0			54.8			522	
Approach LOS		B		B			D			D	
Queue Length 50th (f)	39	234	3	311		31	8		127	125	21
Queue Length 95th (ft)	63	356	m7	408		\#60	29		\#232	\#227	63
Internal Link Dist (t)		797		181			71			263	
Turn Bay Length (f)	150		150								
Base Capacity (yph)	291	2198	95	1717		95	104		252	253	533
Starvation Cap Reductn	0	0	0	0		0	0		0	0	0
Spilback Cap Reductn	0	0	0	0		0	0		0	0	0
Storage Cap Reductn	0	0	0	0		0	,		0	0	0
Reduced vic Rato	0.45	0.60	0.06	0.69		0.54	0.25		0.81	0.80	0.29

Intersection Summary

Area Type:

Other

Cycle Length: 95
Actuated Cycle Length: 95
Offset: 0 (0\%), Referenced to phase 2.EBT. Start of Green
Natural Cycle: 95
Control Type: Actuated-Ccordinated
Maximum w/c Ratio: 0.84
Intersection Signal Delay: 23.3
Intersection Capacity Utizzation 65.9\%
Intersection LOS: C ICU Level of Service C
Analysis Period (min) 15
\# 95th percentie volume exceeds capacity, queve may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Spits and Phases: 9: VIP Dr/Ashleigh Dr \& NH 28

Lane Group							EM			WO		
	NEL	NBT	NBR	SEL	SBT	SBR	NEL	NET	NER	SWL	SWT	SVR
Lane Configurations	7	F		\%	\uparrow	7	\%	¢		\%	ち	
Traffic Volume (vph)	100	320	25	75	185	185	280	345	75	25	175	70
Future Volume (yph)	100	320	25	75	185	185	280	345	75	25	175	70
Ideal Flow (vphpl')	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ti)	150		150	150		150	150		150	150		150
Storage Lanes	1		0	1		1	1		0			0
Taper Length (fi)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.989				0.850		0.973			0.957	
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1842	0	1787	1881	1599	1805	1849	0	1805	1818	0
Fit Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1842	0	1787	1881	1599	1805	1849	0	1805	1818	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4				195		13			21	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	101	323	25	79	195	195	315	388	84	27	188	75
Shared Lane Trafic (\%)												
Lane Group Flow (yph)	101	348	0	79	195	195	315	472	0	27	263	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases		6			2							
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	28.0		14.0	14.0	
Total Split (s)	15.0	24.0		14.0	23.0		23.0	28.0		14.0	19.0	
Total Split (\%)	18.8\%	30.0\%		17.5\%	28.8\%		28.8\%	35.0\%		17.5\%	23.8\%	
Maximum Green (s)	9.0	18.0		8.0	17.0		17.0	22.0		8.0	13.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	20	2.0		2.0	2.0		2.0	20		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize? Lead Lag												
Vehide Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Walk Time (s)								7.0				
Flash Dont Walk (s)								15.0				
Pedestrian Calls (\#hr)								0				
Act Effict Green (s)	8.7	21.8		8.0	21.2	43.5	16.3	29.4		8.0	12.7	
Actuated g/C Ratio	0.11	0.27		0.10	0.26	0.54	0.20	0.37		0.10	0.16	
wic Ratio	0.53	0.69		0.44	0.39	0.20	0.86	0.69		0.15	0.86	
Control Delay	44.2	37.0		42.4	29.4	2.3	54.0	30.0		35.1	58.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	

4A Zone $55: 00$ pm 12/30/2016 Existing 2015 PM Peak PK

Synchro 9 Report Page 1

	M	\uparrow	1	\cdots	\downarrow	\downarrow	$\xlongequal{4}$	\not	\uparrow	\downarrow	\checkmark	4
Lane Group	NBL	NBT	NBR	S8L	SBT	SER	NEL	NET	NER	SWL	SWT	SWR
Total Delay	44.2	37.0		42.4	29.4	2.3	54.0	30.0		35.1	58.0	
LOS	D	D		D	c	A	D	C		D	E	
Approach Delay		38.6			20.4			39.6			55.9	
Approach LOS		D			c			D			E	
Queue Length 50th (fi)	48	165		38	86	0	151	162		13	119	
Queue Length 95th (fi)	97	\#307		80	149	30	\#278	\#394		36	\#248	
Internal Link Dist (ft)		401			267			399			291	
Tum Bay Length (f)	150			150		150	150			150		
Base Capacity (vph)	199	505		178	497	970	383	687		180	313	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spilback Cap Reductn		0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced vic Ratio	0.51	0.69		0.44	0.39	0.20	0.82	0.69		0.15	0.84	
Intersection Summary												
Area Type: Other												
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 0 (0\%), Referenced to phase 2:SBT, Start of Green												
Natural Cycle: 80												
Control Type: Actuated-Coordinated												
Maxímum vic Rato: 0.86												
Intersection Signal Delay: 37.2				Intersection LOS: D								
Intersection Capacity Utilization 74.4\%				ICU Level of Service D								
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												

Splits and Phases: 1: Tsienneto Rd \& NH 28 Byp NEINH 28 Byp SB

APPENDIX G-3: HCM PRINTOUTS - SIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 AM AND PM PEAK HOURS

HCM Signalized Intersection Capacity Analysis
7: Exit 4 SB Off

	1	1	\cdots	\%	V	\nearrow	\downarrow	\checkmark	1	k
Movement	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Confgurations	\%*	1			$\%$	$\uparrow \uparrow$			44	1
Traffic Volume (vph)	210	200	0	0	585	590	0	0	875	0
Future Volume (vph)	210	200	0	0	585	590	0	0	875	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	4.0			6.0	6.0			6.0	
Lane Util. Factor	0.97	1.00			1.00	0.95			0.95	
Frt	1.00	0.85			1.00	1.00			1.00	
Flt Protected	0.95	1.00			0.95	1.00			1.00	
Satd. Flow (grot)	3242	1495			1719	3438			3505	
Fll Permitted	0.95	1.00			0.95	1.00			1.00	
Satd. Flow (perm)	3242	1495			1719	3438			3505	
Peak-hour factor, PHF	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	239	227	0	0	622	628	0	0	951	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (voh)	239	227	0	0	622	628	0	0	951	0
Heary Vehicles (\%)	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3%
Tum Type	Prot	Free			Prot	NA			NA	Free
Protected Phases	2				7	4			8	
Permitted Phases		Free								Free
Actuated Green, G (s)	12.9	100.0			41.1	75.1			28.0	
Effective Green, $\mathrm{g}(\mathrm{s})$	12.9	100.0			41.1	75.1			28.0	
Actuated g/C Ratio	0.13	1.00			0.41	0.75			0.28	
Clearance Time (s)	6.0				6.0	6.0			6.0	
Vehide Extension (s)	3.0				3.0	3.0			3.0	
Lane Grp Cap (vph)	418	1495			$70 \hat{3}$	2581			981	
vis Ratio Prot	c0.07				c0.36	0.18			00.27	
vis Ratio Perm		0.15								
víc Ratio	0.57	0.15			0.88	0.24			0.97	
Uniform Delay, d1	41.0	0.0			27.2	3.8			35.6	
Progression Factor	1.00	1.00			1.00	1.00			1.00	
Incremental Delay, d2	5.6	0.2			12.4	0.0			21.3	
Delay (s)	46.5	0.2			39.6	3.8			56.9	
Level of Service	D	A			D	A			E	
Approach Delay (s)	24.0		0.0			21.6			56.9	
Approach LOS	c		A			C			E	
Intersection Summary										
HCM 2000 Control Delay			34.6	HCM 2000 Level of Service					C	
HCM 2000 Volume to Capacity ratio			0.86							
Actuated Cycle Length (s)			100.0	Sum of lost time (s)					18.0	
Intersection Capacity Utiolization			84.6\%	ICU Level of Service					E	
Analysis Period (min)			15							
c Critical Lane Group										

	\Rightarrow			6	\leftarrow		4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S8R
Lane Configurations	7	个个			4个	＊	＊		$\overline{7}$			
Traffic Volume（vph）	240	740	0	0	540	740	300	0	110	0	0	0
Future Volume（vph）	240	740	0	0	540	740	300	0	110	0	0	0
Ideal Flow（vohpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost ime（s）	6.0	6.0			6.0	4.0	6.0		4.0			
Lane Uti．Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Fil Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Sald．Flow（prot）	1641	3282			3438	1538	1656		1482			
Fil Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Sand．Flow（perm）	1641	3282			3438	1538	1656		1482			
Peak－hour factor，PHF	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Adj．Flow（vph）	276	851	0	0	600	822	385	0	141	0	0	0
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	276	851	0	0	600	822	385	0	141	0	0	0
Heary Vehicles（\％）	10\％	10\％	10\％	5\％	5\％	5\％	9\％	9\％	9\％	2\％	2\％	2\％
Tum Type	Prot	NA			NA	Free	Prot		Free			
Protected Phases	5	2			6		8					
Permited Phases		2			6	Free			Free			
Actuated Green，G（s）	15.7	46.6			24.9	80.0	21.4		80.0			
Effective Green， g （s）	15.7	46.6			24.9	80.0	21.4		80.0			
Actuated g／C Ratio	0.20	0.58			0.31	1.00	0.27		1.00			
Clearance Time（s）	6.0	6.0			6.0		6.0					
Vehicle Extension（s）	3.0	3.0			3.0		3.0					
Lane Grp Cap（vph）	322	1911			1070	1538	442		1482			
w／s Ratio Prot	0.17	0.26			0.17		00.23					
w／s Ratio Perm						c0．53			0.10			
vic Ratio	0.86	0.45			0.56	0.53	0.87		0.10			
Uniform Delay，d1	31.1	9.4			23.0	0.0	28.0		0.0			
Progression Factor	1.05	0.16			1.00	1.00	1.00		1.00			
Incremental Delay， 02	16.2	0.6			2.1	1.3	16.9		0.1			
Delay（s）	49.0	2.1			25.1	1.3	44.9		0.1			
Level of Service	D	A			c	A	D		A			
Approach Delay（s）		13.6			11.4			32.9			0.0	
Approach LOS		B			B			C			A	
Intersection Summary												
			15.9		HCM 2000	evel of S	ervice		B			
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			0.78									
Actuated Cycle Length（s）			80.0		Sum of lost	lime（s）			18.0			
Intersection Capacity Utilization			65．7\％		CU Level	Service			C			
Análysis Period（min）			15									
c Critical Lane Group												

Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	Perm
Protected Phases	5	2	1	6	3	8	7	4	
Permitted Phases									4
Actuated Green, G (s)	6.0	29.3	3.4	26.7	4.0	17.5	4.0	17.5	17.5
Effective Green, $\mathrm{g}(\mathrm{s})$	6.0	29.3	3.4	26.7	4.0	17.5	4.0	17.5	17.5
Actuated g/C Ratio	0.08	0.37	0.04	0.34	0.05	0.22	0.05	0.22	0.22
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	127	630	74	596	87	396	87	401	341
vis Ratio Prot wis Ratio Perm	c0.07	0.16	0.02	co. 28	0.04	co. 20	c0.05	0.14	0.02
v/c Ratio	0.86	0.42	0.50	0.82	0.82	0.87	0.89	0.63	0.08
Uniform Delay, d1	35.7	18.1	36.6	23.5	36.7	29.3	36.9	27.4	24.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	40.1	0.5	5.2	8.4	42.3	18.7	59.7	3.2	0.1
Delay (s)	75.7	18.6	41.8	31.9	79.0	48.0	96.6	30.7	24.1
Level of Service	E	B	D	c	E	D	F	c	C
Approach Delay (s)		34.7		32.6		53.2		40.4	
Approach LOS		C		C		D		D	

Intersection Summary

HCM 2000 Control Delay	39.9	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.84		
Actuated Cycle Length (s)	78.2	Sum of lost time (s)	24.0
Intersection Capacity Utizzation	70.9%	ICU Level of Service	C
Analysis Period (min)	15		

c Critical Lane Group

	\cdots	\uparrow	${ }^{\prime}$	L	\downarrow	\downarrow	4	7	\uparrow	\checkmark	\checkmark	\uparrow
Movement	NBL	NBT	NBR	SBL	SBT	SER	NEL	NET	NER	SW	SWT	SWR
Lane Configurations	1	个个	7	栜	$\uparrow \uparrow$	1	${ }^{*}$	\uparrow	1	${ }^{*}$	\uparrow	\％
Traffic Volume（vph）	20	230	135	310	220	145	135	170	20	125	290	370
Future Volume（vph）	20	230	135	310	220	145	135	170	20	125	290	370
Ideal Flow（yphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost ime（s）	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	4.0	6.0	6.0	6.0
Lane Unll．Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Sald．Flow（prot）	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Saxd．Flow（perm）	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
Peak－hour factor，PHF	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Adj．Flow（vph）	24	274	161	392	278	184	157	198	23	126	293	374
RTOR Reduction（vph）	，	0	113	0	0	114	0	0	O	0	，	155
Lane Group Flow（vph）	24	274	48	392	278	70	157	198	23	126	293	219
Heavy Vehicles（\％）	4\％	4\％	4\％	5\％	5\％	5\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Free		NA	$\mathrm{pl}+\mathrm{or}$
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2		6	6		4	Free		8	
Actuated Green，G（s）	8.0	26.8	26.8	15.2	34.0	34.0	9.0	15.3	90.0	8.7	15.0	36.2
Effective Green， g （s）	8.0	26.8	26.8	15.2	34.0	34.0	9.0	15.3	90.0	8.7	15.0	362
Actuated g／＇Ratio	0.09	0.30	0.30	0.17	0.38	0.38	0.10	0.17	1.00	0.10	0.17	0.40
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	154	1033	462	563	1298	581	175	313	1568	169	307	630
w／s Ratio Prot	0.01	c0．08		0.12	0.08		00.09	0.11		0.07	c0．16	0.14
w／s Ratio Perm			0.03			0.05			c0．01			
vic Ratio	0.16	0.27	0.10	0.70	0.21	0.12	0.90	0.63	0.01	0.75	0.95	0.35
Unilorm Delay，d1	37.9	24.1	22.9	35.2	19.0	18.2	40.0	34.7	0.0	39.6	37.2	18.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	21	0.6	0.5	3.7	0.4	0.4	39.8	4.1	0.0	163	39.0	0.3
Delay（s）	40.0	24.7	23.3	39.0	19.3	18.7	79.8	38.9	0.0	55.9	76.1	19.0
Level or Service	D	C	C	D	B	B	E	D	A	E	E	B
Approach Delay（s）		25.0			28.2			53.5			46.0	
Approach LOS		c			C			D			D	
Intersection Summary												
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			37.1	HCM 2000 Level of Service					0			
			0.61	Sum of lost time（s）								
Actuated Cycle Length（s）			90.0						24.0			
Intersection Capacity Uttization Analysis Period（min）			58．3\％	ICU Level of Service								
			15						B			

c Critical Lane Group

	\%	\rightarrow		\checkmark	\leftarrow	4	4	4	p	\checkmark	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	K1	个 4		\%	\uparrow		\%	今		\%	\uparrow	F
Trafic Volume (vph)	100	630	5	5	610	220	10	5	5	180	5	100
Future Volume (vph)	100	630	5	5	610	220	10	5	5	180	5	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	60		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Fit	1.00	1.00		1.00	0.96		1.00	0.93		1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	3303	3402		1736	3333		1805	1758		1665	1674	1568
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	3303	3402		1736	3333		1805	1758		1665	1674	1568
Peak-hour factor, PHF	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Adj. Flow (vph)	120	759	6	5	629	227	15	7	7	200	6	111
RTOR Reduction (vph)	0	0	0	0	41	0	0	7		0	0	81
Lane Group Flow (vph)	120	765	0	5	815	0	15	7	0	102	104	30
Heavy Vehicles (\%)	6\%	6\%	6\%	4\%	4\%	4\%	0\%	0\%	0\%	3\%	3\%	3\%
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pltor
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases								3				45
Actuated Green, G (s)	8.0	50.2		1.0	43.2		4.1	4.1		10.7	10.7	24.7
Effective Green, $\mathrm{g}(\mathrm{s})$	8.0	50.2		1.0	43.2		4.1	4.1		10.7	10.7	24.7
Acluated g/C Ratio	0.09	0.56		0.01	0.48		0.05	0.05		0.12	0.12	0.27
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	293	1897		19	1599		82	80		197	199	430
w/s Ratio Prot w/s Ratio Perm	00.04	c0.22		0.00	co. 24		00.01	0.00		0.06	c0.06	0.02
wc Ratio	0.41	0.40		0.26	0.51		0.18	0.09		0.52	0.52	0.07
Uniform Delay, d1	38.8	11.4		44.1	16.1		41.3	41.2		37.2	37.3	24.2
Progression Factor	1.00	1.00		1.52	0.60		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.9	0.1		6.9	1.1		1.1	0.5		2.3	2.5	0.1
Delay (s)	39.7	11.5		73.9	10.8		42.4	41.7		39.5	39.7	24.2
Level of Service	D	B		E	B		D	D		D	0	C
Approach Delay (s)		15.3			11.2			42.1			34.2	
Approach LOS		B			B			D			C	

Intersection Summary			
HCM 2000 Control Delay	16.9	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.48		24.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	A
Intersection Capacity UEtization	54.8%	ICU Level of Service	
Analysis Period (min)	15		

Movement	NBL	NBT	NER	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	ち		7	\uparrow	7	7	今		7	F	
Traffic Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Future Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.93		1.00	0.96	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Sald. Flow (prot)	1752	1822		1736	1827	1553	1770	1738		1787	1811	
Fit Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1752	1822		1736	1827	1553	1770	1738		1787	1811	
Peak-hour factor, PHF	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Adj. Flow (vph)	122	268	24	31	259	315	176	147	118	103	346	115
RTOR Reduction (vph)	0	4	0	0	0	121	0	34	0	0	15	0
Lane Group Flow (yph)	122	288	0	31	259	194	176	231	0	103	447	0
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2%	1\%	1\%	1\%
Tum Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	.		7	4	
Permited Phases 80												
Actuated Green, G (s)	8.0	21.8		3.2	17.0	32.0	9.0	23.4		7.6	22.0	
Effective Green, $\mathrm{g}(\mathrm{s})$	8.0	21.8		3.2	17.0	32.0	9.0	23.4		7.6	22.0	
Actuated g/C Ratio	0.10	0.27		0.04	0.21	0.40	0.11	0.29		0.09	0.28	
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	175	496		69	388	621	199	508		169	498	
n's Raso Prot	00.07	c0.16		0.02	c0.14	0.12	0.10	0.13		0.06	co. 25	
vic Rato	0.70	0.58		0.45	0.67	0.31	0.88	0.45		0.61	0.90	
Uniform Delay, d1	34.8	25.2		37.5	28.9	16.5	35.0	23.1		34.8	27.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	11.4	1.7		4.6	8.8	0.3	33.9	0.6		6.1	18.5	
Delay (s)	46.3	26.9		42.1	37.7	16.7	68.9	23.7		40.9	46.4	
Level of Service	D	c		D	D	B	E	C		D	D	
Approach Delay (s)		32.6			27.0			41.7			45.4	
Approach LOS		C			C			D			D	

Intersection Summary			
HCM 2000 Control Delay	36.5	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.80		24.0
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	C
Intersection Capacity Utilization	65.8%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	\dagger	\rightarrow		7	\longleftarrow		4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow	\％	${ }^{*}$	个个					＊＊		「
Traffic Volume（vph）	0	650	280	135	490	0	0	0	0	645	0	265
Future Volume（yph）	0	650	280	135	490	0	0	0	0	645	0	265
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		6.0	4.0	6.0	6.0					6.0		6.0
Lane Util．Factor		0.95	1.00	1.00	0.95					0.97		1.00
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Fit Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd．Flow（prot）		3471	1553	1719	3438					3367		1553
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd．Flow（perm）		3471	1553	1719	3438					3367		1553
Peak－hour factor，PHF	0.87	0.87	0.87	0.85	0.86	0.85	0.92	0.92	0.92	0.91	0.91	0.91
Adj．Flow（vph）	0	747	322	157	570	0	0		0	709	0	291
RTOR Reduction（vph）	0	0	，	0	0	0	0	0	0	0	0	197
Lane Group Flow（vph）	0	747	322	157	570	0	0	0	0	709	0	94
Heavy Vehides（\％）	4\％	4\％	4\％	5\％	5\％	5\％	2\％	2%	2\％	4\％	4\％	4\％
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free		1							
Actuated Green，G（s）		38.5	100.0	14.7	59.2					28.8		28.8
Effective Green， g （ s ）		38.5	100.0	14.7	59.2					28.8		28.8
Actuated g／C Raso		0.38	1.00	0.15	0.59					0.29		0.29
Clearance Time（s）		6.0		6.0	6.0					6.0		6.0
Vehide Extension（s）		4.0		4.0	4.0					4.0		4.0
Lane Grp Cap（vph）		1336	1553	252	2035					969		447
vis Ratio Prot		00．22		c0．09	0.17					c0．21		0.06
vis Ratio Perm			0.21									
vic Ratio		0.56	0.21	0.62	0.28					0.73		0.21
Uniform Delay，d1		24.1	0.0	40.0	10.0					32.1		27.0
Progression Faclor		1.00	1.00	0.90	0.42					1.00		1.00
Incremental Delay，d2		1.7	0.3	4.9	0.1					3.1		0.3
Delay（s）		25.8	0.3	40.7	4.3					35.2		27.3
Level of Service		C	A	D	A					0		C
Approach Delay（s）		18.1			12.1			0.0			32.9	
Approach LOS		B			B			A			C	
Intersection Summary												
			21.8		CM 2000	evel of S	ervice		C			
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			0.63									
Actuated Cycle Length（s）			100.0		Sum of lost	lime（s）			18.0			
Intersection Capacity Utilization			58．8\％		CU Level	Service			B			
Analysis Period（min）			15									
c Critical Lane Group												

	9	\uparrow	$\stackrel{1}{1}$	\checkmark	\downarrow	\downarrow	4	\triangle	\downarrow	\downarrow	\checkmark	ϑ
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET		SWL	SWT	SWR
Lane Configurations	\%	$\uparrow \uparrow$	\%	\% ${ }^{*}$	\uparrow	7	\dagger	\uparrow	7	\%	\uparrow	$\overline{7}$
Traffic Volume (vph)	80	360	150	520	430	190	240	320	90	150	220	380
Future Volume (yph)	80	360	150	520	430	190	240	320	90	150	220	380
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	3433	1863	1583	1770	1863	1583	1787	1881	1599
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	3433	1863	1583	1770	1863	1583	1787	1881	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Adj. Flow (vph)	87	391	163	553	457	202	250	333	94	158	232	400
RTOR Reduction (vph)	O	0	121	0	0	125	0	0	71	0	0	89
Lane Group Flow (vph)	87	391	42	553	457	77	250	333	23	158	232	311
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	pm+or
Protected Phases	5	2		1	6		7	4		3	8	1
Permitted Phases			2						4			8
Actuated Green, G (s)	9.8	29.4	29.4	24.3	43.9	43.9	18.4	28.3	28.3	9.0	18.9	43.2
Effective Green, g (s)	9.8	29.4	29.4	24.3	43.9	43.9	18.4	28.3	28.3	9.0	18.9	43.2
Actuated g/C Ratio	0.09	0.26	0.26	0.21	0.38	0.38	0.16	0.25	0.25	0.08	0.16	0.38
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	150	904	404	725	711	604	283	458	389	139	309	684
w/s Ratio Prot	0.05	0.11		c0. 16	$\infty .25$		00.14	c0.18		0.09	0.12	0.10
w/s Ratio Perm			0.03			0.05			0.01			0.10
wic Ratio	0.58	0.43	0.10	0.76	0.64	0.13	0.88	0.73	0.06	1.14	0.75	0.46
Uniform Delay, di	50.6	35.8	32.7	42.6	29.1	23.1	47.3	39.8	33.2	53.0	45.8	27.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	5.4	1.5	0.5	4.8	2.0	0.1	26.0	5.7	0.1	117.8	9.8	0.5
Delay (s)	56.0	37.3	33.2	47.4	31.1	23.2	73.3	45.5	33.2	170.8	55.6	27.5
Level of Service	E	D	C	D	C	C	E	D	C	F	E	C
Approach Delay (s)		38.8			37.2			54.0			64.4	
Approach LOS		D			D			D			E	
Intersection Summary												
			47.4		HCM 2000 L	evel of S	ervice		D			
HCM 2000 Volume to Capacity rato			0.78									
Actuated Cycle Length (s)			115.0		Sum of lost	ime (s)			24.0			
Intersection Capacity Utilization			74.5\%		CU Level of	Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

APPENDIX H: GOOGLE MAPS PRINTOUT OF TRAFFIC CONDITIONS - DERRY AREA - JANUARY 2018

Thursday, January 25, 2018

APPENDIX I: HCM PRINTOUTS - UNSIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 AM AND PM PEAK HCM PRINTOUTS

Major/Minor	Minor2		Minor1				Major			Major2		
Conflicting Flow All	1942	1943	1198	1940	1954	568	1212	0	0	571	0	0
Stage 1	1209	1209	.	731	731	
Stage 2	733	734	-	1209	1223	-	-	-	.	-	-	
Critical Howy	7.12	6.52	6.22	7.1	6.5	6.2	4.12	-	-	4.12	-	
Critical Howy Stg 1	6.12	5.52	.	6.1	5.5	.	.	-	-	.	-	
Critical Howy Stg 2	6.12	5.52	-	6.1	5.5	-	\cdot	-	-	\cdot	-	
Follow-up Hdwy	3.518	4.018	3.318	3.5	4	3.3	2218	-	-	2.218	.	
Pot Cap-1 Maneuver	49	65	226	50	65	526	576	-	-	1002	-	
Stage 1	223	256	.	416	430	.	.	-	-	.	.	
Stage 2	412	420	-	225	254	-	-	-	-	-	.	
Platoon blocked, \%								-	-		.	
Mov Cap-1 Maneuver	43	55	226	22	55	526	576	-	-	1002	-	
Mov Cap-2 Maneuver	43	55	.	22	55	
Stage 1	191	252		357	369	-	-	-	-	-	-	
Stage 2	351	355	-	110	250	-	-	-	.	-	-	-

Approach	SE	NW	NE	SW
HCM Control Delay,	43	11.9	1.5	0

Intersection						
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	†	
Traffic Vol, veh/h	180	10	5	125	175	230
Future Vol, veh/h	180	10	5	125	175	230
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channeized	.	None	-	None	.	None
Storage Length	0	.	-	.	-	.
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	\cdot	-	0	0	-
Peak Hour Factor	89	89	91	91	93	93
Heavy Vehides, \%	5	5	4	4	2	2
Munt Flow	202	11	5	137	188	247

MajorMinor	Minor2		Majort		Major2	
Conficing Flow All	460	312	435	0	.	0
Stage 1	312	.	.	-	-	.
Stage 2	148	\cdot	\cdot	-	-	-
Critical Hdwy	6.45	6.25	4.14	-	-	-
Critical Hdwy Stg 1	5.45	.	.	.	-	.
Critical Hdwy Sigg 2	5.45	\cdot	\cdot	-	-	-
Folow-up Hdwy	3.545	3.345	2.236	-	-	-
Pot Cap. 1 Maneuver	554	721	1114	-	-	-
Stage 1	735	.	.	.	-	-
Stage 2	872	-	-	-	-	-
Platoon blocked, \%				.	-	-
Mow Cap-1 Maneuver	551	721	1114	-	-	-
Mow Cap-2 Maneuver	551	.	.	-	-	-
Stage 1	735	-	-	.	-	.
Stage 2	868	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	15.4	0.3	0

Minor Lane/Major Mumt	NBL	NBT EBLL1	SBT	SBR	
Capacity (vehhh)	1114	-558	$:$	$:$	
HCM Lane V/C Ratio	0.005	-0.383	$:$	$:$	
HCM Control Delay (s)	8.2	0	15.4	$:$	$:$
HCM Lane LOS	A	A	C	$:$	$:$
HCM 95th \%tile Q(veh)	0	\cdot	1.8	\cdot	$:$

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	S8R
Lane Configurations	\%			\uparrow	ち	
Traffic Vol, vehh	10	0	0	310	400	20
Future Vol, vehh	10	0	0	310	400	20
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	.	None
Storage Length	0	.	.	.	-	.
Veh in Mecian Storage, \#\#	0	-	-	0	0	-
Grade, \%	0	.	.	0	0	.
Peak Hour Factor	44	44	95	95	96	96
Heavy Vehides, \%	79	79	4	4	6	6
Munt Flow	23	0	0	326	417	21

MajorMinor	Minor2		Major 1		Major2	
Conficting Flow All	753	427	438	0	-	0
Stage 1	427	.	.	.	-	.
Stage 2	326	-	-	-	-	-
Critical Hdwy	7.19	6.99	4.14	-	-	-
Critical Hdwy Stg 1	6.19	.	.	-	-	-
Critical Hdwy Stg 2	6.19	-	-	-	-	-
Folow-up Howy	4.211	4.011	2.236	-	-	-
Pot Cap-1 Maneuver	286	492	1111	-	-	-
Stage 1	521
Stage 2	587	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mow Cap-1 Maneuver	285	492	1111	-	-	-
Mow Cap-2 Maneuver	28%
Stage 1	521	-	-	-	-	-
Stage 2	587	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, S	18.7	0	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1111	286	\cdot	\cdot
HCM Lane VIC Ratio	\cdot	-0.079	\cdot	$:$
HCM Control Delay (s)	0	$\cdot 18.7$	\cdot	$:$
HCM Lane LOS	A	\cdot	C	\cdot
HCM 95th \%Ble Q(veh)	0	\cdot	0.3	\cdot

Intersection												
Int Delay, s/veh 2.5												
Movement	EBL EBT		EBR	WBL	WBT	WBR			SER		NWT NWR	
Lane Configurations		t			¢			4			4	
Traffic Vol, veh/h	35	270	5	30	385	10	10	5	30	10	5	35
Future Vol, veh/h	35	270	5	30	385	10	10	5	30	10	5	35
Conficicing Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Slop
RT Channelized	-		None		-	None	.	.	Yield	.		None
Storage Length	-	-	.	-	-	
Veh in Median Storage, \#t	-	0	-	-	0	-	-	0			0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	89	89	89	96	96	96	65	65	65	67	67	67
Heavy Vehicles, \%	7	7	7	5	5	5	2	2	2	0	0	0
Mumt Flow	39	303	6	31	401	10	15	8	46	15	7	

Major/Minor	Major1	Major2				Minor2			Minor1			
Conficting Flow All	411	0	0	309	0	0	884	857	406	858	859	306
Stage 1	.	-	.	.	.	-	469	469	.	385	385	
Stage 2	-	-	-	-	-	-	415	388	-	473	474	
Critical Howy	4.17	-	-	4.15	-	-	7.12	6.52	6.22	7.1	6.5	6.2
Critical Hdwy Stg 1	.	-	-	.	-	-	6.12	5.52	.	6.1	5.5	.
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	\cdot	6.1	5.5	.
Follow-up Hdwy	2.263	-	-	2.245	-	-	3518	4.018	3.318	3.5	4	3.3
Pot Cap-1 Maneuver	1121	.	-	1235	.	.	266	295	645	279	296	739
Stage 1	.	-	-	.	-	.	575	561	.	642	614	
Stage 2	-	.	-	-	-	-	615	609	-	576	561	
Platoon blocked, \%		-	-		-	.						
Mov Cap-1 Maneuver	1121	-	-	1235	.	.	228	273	645	239	274	739
Mov Cap-2 Maneuver	.	-	-	.	-	.	228	273	.	239	274	
Slage 1	-	-	-	-	.	-	551	542		615	588	
Stage 2	-	-	-	-	-	-	541	583	-	510	542	-

Approach	EB	WB	SE	NW
HCM Control Delay, s	0.9	0.6	10.5	14.2
HCM LOS		B	B	

Minor Lane/Major Mumt	NWLn 1	EBL	EBT	EBR	WBL	WBT	WBR	SELn1
Capacity (vehhh)	465	1121	-	.	1235	.	-	724
HCM Lane V/C Ratio	0.16	0.035	-	-	0.025	.	-	0.096
HCM Control Delay (s)	14.2	8.3	-	.	8	0	-	10.5
HCM Lane LOS	B	A	-	-	A	A	-	B
HCM 95th \%tile Q(veh)	0.6	0.1	-	-	0.1	.	-	0.3

Intersection						
Int Delay, s/veh	22.6					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	\%	7	\uparrow	F		¢ \uparrow
Traffic Vol, vehh	215	80	370	245	80	570
Future Vol, vehh	215	80	370	245	80	570
Conflicting Peds, \#thr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	.	None	.	Yield	.	None
Storage Length	\cdot	150	-	0	-	-
Veh in Median Storage, \#\%	0	.	0	.	-	0
Grade, \%	0	-	0	\cdot	-	0
Peak Hour Factor	83	83	86	86	81	81
Heavy Vehicles, \%	2	2	3	3	2	2
Munt Flow	259	96	430	285	99	704

\sim Volume exceeds capacity $\$$: Delay exceeds 300 s $\quad+$: Computation Not Defined \quad : All major wolume in platoon

Intersection						
Int Delay, s/veh 11.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	\uparrow	ち		M ${ }^{1}$	
Traffic Vol, vehh	15	720	645	40	80	35
Future Vol, veh/h	15	720	645	40	80	35
Conficising Peds, \#fihr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	.	None	.	None	.	None
Storage Length	0	-	-	.	0	.
Veh in Median Storage, \#	.	0	0	.	0	
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	84	84	89	89	83	83
Heavy Vehides, \%	7	7	4	4	6	6
Mumt Flow	18	857	725	45	96	42

MajoriMinor	Major1		Major2		Mnor2	
Conficting Flow Al	770	0	.	0	1640	747
Stage 1	747	.
Stage 2	-	-	-	-	893	\cdot
Critical Hdwy	4.17	-	-	-	6.46	6.26
Cofitical Hdwy Stg 1	.	-	-	-	5.46	.
Cntical Hdwy Stg 2	-	-	.	-	5.46	.
Follow-up Hdwy	2.263	-	-	-	3.554	3.354
Pot Cap-1 Maneuver	823	-	-	-	108	406
Stage 1	.	-	.	-	461	.
Stage 2	-	-	.	-	393	-
Platoon blocked, \%		-	-	.		
Mov Cap-1 Maneuver	823	.	-	-	106	406
Mou Cap-2 Maneuver	.	-	-	-	106	.
Stage 1	-	-	-	-	461	.
Stage 2	-	-	-	-	384	-

Approach	EB	WB	S8
HCM Control Delay, s	0.2	0	143.2
HCM LOS		F	

Minor LaneMajor Mumt	EBL	EBT	WBT	WBR SELn1
Capacity (veh/h)	823	-	-	137
HCM Lane VIC Ratio	0.022	-	.	- 1.011
HCM Control Delay (s)	9.5	-	-	143.2
HCM Lane LOS	A	-	.	- F
HCM 95th \%ole Q (veh)	0.1	-	-	7.3

Intersection										
Intersection Delay, sweh	76.6									
Infersestion LOS	F	ZRR		Bypz8		Byp^{28}		EB		102 W/S
Bsproash		WB		NB		SB		NE		SW
Entry Lanes		1		1		1		1		1
Cofflicing Cirde Lanes		1		1		1		1		1
Adj Approach Fiou, vehim		516		436		557		617		397
Demand Flow Rate, vebh		530		450		596		666		424
Vehides Crolazing, vehh		788		673		Q58		629		1005
Vehides Exitig, vehin		335		622		732		665		312
Folow-Up Headway, s		3.186		3.186		3.186		3.186		3.185
Ped Vol Crossing Leg, 㔙		0		0		0		0		0
Ped Cap Ad		1.050		1.000		1.000		1.000		1.000
Approach Delay, sweh		77.5		29.5		83.5		96.6		86.1
Approsch LOS		F		D		F		F		F
Lane	Lefl		Left		Left		Left		Left	
Desigrated Mones	LR		LTR		LTR		LTR		LTR	
Ass-mes Moves	LR		LTR		LTR		LTR		LTR	
RT Channeliced										
Lane Ut	1.000		1.050		1.000		1.000		1.000	
Critcal Heatway, s	5.193		5.193		5.193		5.193		5.193	
Enry Flow, velith	530		450		595		666		424	
Cap Emry Lane, vehín	514		576		562		602		413	
Enroy HV Adj Factor	0.973		0.970		0.936		0.526		0.935	
Flow Entry, veh/'h	516		436		557		617		395	
Cap Enty, veh/h	500		569		526		558		385	
VIC Rajo	1.031		0.781		1.058		1.106		1.026	
Control Delay, siveh	77.5		29.5		83.5		96.6		86.1	
LOS	F		D		F		F		F	
95\% \%sle Cusue, veh	15		7		16		19		13	

Apporach	EB	WB	NB	SB
HCM Control Delay, s	237	F	F	3.6
HCM LOS	F		0.3	

Intersection						
Int Delay, s/veh	2 L		${ }^{\circ}$	C		E
Movement	EBL	EBR	NBL	NBT	S8T	SBR
Lane Configurations	M			\uparrow	p	
Traffic Vol, veh/h	95	0	15	165	320	300
Future Vol, veh/h	95	0	15	165	320	300
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	.	None	-	None
Storage Length	0	.	.	-	-	-
Veh in Median Storage, \#\#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	94	94	91	91	82	82
Heavy Vehicles, \%	2	2	11	11	2	2
Mvmt Flow	101	0	16	181	390	366

Intersection						
Int Delay, s/veh 4	44.5					
Movement	EBL	EBR	NBL	NBT	SBT	S8R
Lane Configurations	M			4	†	
Traffic Vol, vehh	420	5	5	290	170	265
Future Vol, veh/h	420	5	5	290	170	265
Conflicting Peds, \#ht	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	.	None	.	None
Storage Length	0
Veh in Mestian Storage, \#	0	\cdot	-	0	0	
Grade, \%	0	-	-	0	0	\cdot
Peak Hour Factor	90	90	87	87	87	87
Heavy Vehicles, \%	,	1	2	2	1	1
Mumt Flow	467	6	6	333	195	305

Minor Lane/Major Mumt	NBL	NBT EBL.n1	SBT	SBR	
Capacity (vehh)	1064	-410	\cdot	$:$	
HCM Lane VIC Raso	0.005	-1.152	\cdot	$:$	
HCM Control Delay (s)	8.4	0	123.5	\cdot	$:$
HCM Lane LOS	A	A	F	\cdot	$:$
HCM 95th \%tile Q(veh)	0	-17.8	\cdot	$:$	

Notes
~: Volume exceeds capacity $\$$: Delay exceeds 300 s $\quad+$: Computation Not Defined *: All major volume in platoon

Majorminor	Minor2		Major1		Major2	
Conflicting Flow All	1270	517	523	0	.	0
Stage 1	517	.	-	.	.	.
Stage 2	753	\cdot	\cdot	-	-	-
Critical Hdwy	6.46	6.26	4.11	-	.	.
Critical Hdwy Stg 1	5.46
Crifical Hodwy Stg 2	5.46	\cdot	-	-	-	-
Follow-up Hdwy	3.554	3.354	2.209	-	-	.
Pot Cap-1 Maneuver	182	550	1049	-	-	-
Stage 1	590	.	.	-	-	-
Stage 2	458	\cdot	-	-	-	-
Platoon blocked, \%				-	-	-
Mor Cap. 1 Maneuver	182	550	1049	-	-	.
Mov Cap-2 Maneuver	182	.	.	-	-	-
Stage 1	590	-	-	.	-	-
Slage 2	458	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	27.2	0	0

Minor Lane/Major Mumt	NBL	NBTEBLT 1	SBT	SBR
Capacity (veh/h)	1049	182	-	.
HCM Lane V/C Ratio	.	0.11	-	-
HCIM Control Delay (s)	0	- 27.2	-	-
HCM Lane LOS	A	D	-	-
HCM 95th \%tile Q(veh)	0	0.4		

Intersection												
Int Delay, s/veh 4												
Movement	EBL	EBT	EBR	WBL	WBT	WER	SEL	SET	SER	NWL NWT		NWR
Lane Configurations		4			\pm			\dagger			4	
Traffic Vol, veh/h	45	665	5	30	375	20	20	10	70	5	10	50
Future Vd, veh/h	45	665	5	30	375	20	20	10	70	5	10	50
Conflicting Peds, 期r	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	.	.	None	.	.	Yield	,	Siop	None
Slorage Length	-	-	.	-	-	.	-	-	.	-	-	.
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	.
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	.
Peak Hour Factor	94	94	94	88	88	88	67	67	67	82	82	82
Heavy Vehicles, \%	1	1	1	2	2	2	0	0	0	0	0	0
Mumt Flow	48	707	5	34	426	23	30	15	104	6	12	61

MajorMinor	Majort		Major2			Minot2			Minor1			
Conficting Flow All	449	0	0	713	0	0	1348	1315	438	1319	1323	710
Stage 1	-	-	-	.	.	.	506	506	.	806	806	
Stage 2	-	-	-	-	-	-	842	809	-	513	517	
Critical Hdwy	4.11	-	-	4.12	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	.	-	-	.	-	-	6.1	55	.	6.1	5.5	.
Critical Hdwy Stg 2	-	-	-	\cdot	-	-	6.1	5.5	-	6.1	5.5	-
Folow-up Hdwy	2.209	-	-	2.218	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1117	-	-	887	-	-	129	159	623	135	158	437
Stage 1	.	.	-	.	.	.	552	543	.	379	398	.
Stage 2	\cdot	-	-	-	-	-	362	390	-	548	537	.
Platoon blocked, \%		-	-		-	-						
Mov Cap-1 Maneuver	1117	-	-	887	-	-	94	140	623	94	139	437
Mov Cap-2 Maneuver	.	-	-	.	.	.	94	140	.	94	139	.
Stage 1	-	-	-	-	-	-	513	515	-	352	370	
Stage 2	-	-	-	-	-	-	280	368	\cdot	420	510	-

Approach	EB	WB	SE	NW
HCM Control Delay, s	0.5	0.7	22.5	23.7
HCM LOS			C	C

Minor Lane/Major Mumt	NWLin	EBL	EBT	EBR	WBL	WBT	WBR SELIT
Capacity (veh/h)	271	1117	-	.	887	.	352
HCM Lane VIC Ratio	0.293	0.043	-	-	0.038	-	- 0.424
HCM Control Delay (s)	23.7	8.4	0	-	9.2	0	- 225
HCM Lane LOS	C	A	A	-	A	A	- C
HCM 95\%n \%tie Q(veh)	1.2	0.1	.	-	0.1	.	,

$\begin{array}{ll} \text { Intersection } & \\ \hline \text { Int Delay, s/veh } & 28.8 \end{array}$						
Movement	NWL	NWR	NET	NER	SWL	
Lane Configurations	$\%$	7	\uparrow	${ }^{7}$		4个
Traffic Vol, veh/h	180	120	580	410	115	570
Future Vol, veh/h	180	120	580	410	115	570
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channeized	.	None	.	Yield		None
Storage Length	-	150	-	-	.	.
Veh in Median Storage, \#	0	.	0	.	-	0
Grade, \%	0	-	0	-	.	0
Peak Hour Factor	86	86	96	96	85	85
Heavy Vehides, \%	1	1	1	1	1	1
Mumt Flow	209	140	604	427	135	

Major/Minor	Majorl		Mejor2		Minor2	
Confficting Flow Al	956	0	.	0	2191	867
Stage 1	867	.
Stage 2	-	-	-	.	1324	.
Critical Howy	4.12	-	.	-	6.43	6.23
Critcal Howy Stg 1	.	-	-	-	5.43	.
Critical Howy Stg 2	-	-	.	.	5.43	.
Follow-up Hdwy	2.218	-	-	.	3.527	3.327
Pot Cap-1 Maneuver	719	-	.	.	~ 50	351
Stage 1	.	-	-	-	410	.
Stage 2	-	-	-	-	247	.
Platoon blecked, \%		.	-	.		
Mov Cap-1 Maneuver	719	-	-	.	-47	351
Mov Cap-2 Maneuver	-	-	-	-	-47	.
Stage 1	-	-	-	-	410	-
Stage 2	-	-	-	-	232	.

Approach	E8	WB	S8
HCM Control Delay, s	0.4	0	$\$ 656.1$
HCM LOS		F	

Notes
\sim : Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad 4$: Computation Not Defined \quad : All major volume in platoon

Intesection											
Intersection Delay, sweh	153.6										
Intersection LOS	F		EDR		Bye2r		Byp 28		102 ES		102 ws
Afproach		WB			NB		SB		NE		SW
Entry Lanes		1			1		1		1		1
Corficting Circle Lanes		1			1		1		1		1
Adj Apprcach Flow, veth		544			489		804		688		264
Demand Flow Rate, vehh		549			499		811		695		268
Vehides Croulaing, vehh		823			1065		556		862		964
Vehives Exting, vetim		726			502		677		504		413
Folow-Up Headway,s		3.186			3.186		3.186		3.186		3185
Ped Val Crossing Leg, 䉼		0			0		0		0		0
Ped Cap Ad		1.050			1.000		1.000		1.000		1.000
Approach Delay, siveh		103.3			169.4		146.4		240.0		24.6
Approsich LOS		F			F		F		F		-
Lane	Leff			Let		Leff		Left		Left	
Desigrated Moves	LR			LTR		LTR		LTR		LTR	
Ass-med Moues	LR			LTR		LTR		LTR		LTR	
RT Channeliced											
Lane Ut	1.000			1.050		1.000		1.050		1.000	
Critical Headway, s	5.193			5.193		5.193		5.193		5.193	
Entry Flow, veth	549			499		811		895		268	
Cap Eniry Lane, vehin	494			393		649		477		431	
Enty HV Adj Factor	0.991			0.980		0.991		0.980		0.983	
Flow Entry, velh'h	544			489		803		688		263	
Cap Enry, vel/h	489			385		643		473		424	
VIC Rajo	1.112			1.268		1.250		1.456		0.622	
Control Delay, siveh	1033			169.4		$14 \hat{6} 4$		240.0		24.6	
LOS	F			F		F		F		c	
95\% \%fle Cuese, veh	18			21		30		34		4	

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WER	NBL	NBT	NBR	SBL	SBT	S8R
Lane Configurations		\uparrow	F'		\dagger			¢			\$	
Traffic Vol, veh/n	10	40	435	5	30	20	200	435	10	25	290	15
Future Vol, veh/n	10	40	435	5	30	20	200	435	10	25	290	15
Conficting Peds, \#̈hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	.	.	None	-	.	None	.		None	.		None
Storage Length	-	-	0	-	-	.	-	-	.	.	.	
Veh in Median Storage, \#	-	0	.	-	0	-	-	0	-		0	
Grade, \%	\cdot	0	-	\cdot	0	-	\cdot		\cdot	-	0	
Peak Hour Factor	88	88	88	82	82	82	93	93	93	91	91	91
Heavy Vehicles, \%	2	2	2	0	0	0	1	1	1	1	1	1
Mumt Flow	11	45	494	6	37	24	215	468	11	27	319	16

MajorMinor	Mnor2			Minor1			Majorl			Major2		
Conficting Flow All	1316	1291	327	1308	1293	473	335	0	0	478	0	0
Stage 1	382	382	.	903	903	
Stage 2	934	909	.	405	390	.	.	-
Critical Hdwy	7.12	6.52	6.22	7.1	6.5	6.2	4.11	-	-	4.11	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.1	5.5	.	.	-	-	.	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.1	5.5	\cdot	-	-	-	.	-	-
Follow-up Howy	3.518	4.018	3.318	3.5	4	3.3	2.209	.	.	2.209	.	-
Pot Cap-1 Maneuver	135	163	714	138	164	595	1230	-	-	1090	-	
Stage 1	640	613	.	335	359	.	.	-	-	.	-	
Stage 2	319	354	\cdot	626	611	-	-	-	-	-	.	-
Fatoon blocked, \%								-	-		-	-
Mov Cap-1 Maneuver	80	120	714	24	121	595	1230	-	-	1090	-	
Mow Cap-2 Maneuver	80	120	.	24	121	.	.	-	-	.	-	
Stage 1	488	594	-	255	274	-	-	-	-	-	-	
Stage 2	202	270	-	172	592	.	-	-	-	-	.	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	25.6			76.5			2.6			0.6		
HCM LOS	D			F								

APPENDIX J: 2040 AWDT PEAK HOUR VOLUMES

	22-8pe-2	TA3LE1-1														
	rrea 5-17.17	Adusted 2090 ARWDT and Frak Hour No-Euild volumes based an 2015 cousts														
	180 9.14 .17															
		Inom														
		Sxametreses			momaction Tuming VSverest Cound			16,	\|swfeax	Suspak						
		2xt4 $\times 2015$	1175				Forlt		- asc	195						
		2015-37015	1500				Hang		0.56	2.98						
		2<tts3013	0.575				luse		0.56	2.96						
							3/ver		1.06	- 0.95						
							Sest		0.55	2907						
														Naph 510		
														2715261		
					Cosesed	252005		coumed	22^{2065}		30t5wner	200 Aniot	x	MNOT	3200	2090
		count	Fana	A 52065	ant Prak	AMFeat	20¢Pxic	Fat Prek	Pur Fosk	FXPfes	Exselitodes	Nosblid	Grove	2300) 05	vosed	Noss
	Conat Locrion	Montive	มuwat	ARNOT	Voume	volune	Soldandy	notume	volun	Narawat	Resics	Axsigs	2215×5	280000	LVPr	Phat
Dery		Nar-15	15,585	25.195	E36	809	5285	1513	1370	\$15\%	12905	2012	23787	115,584		
	Foboom 26 W ot NH 128	N0.0.35	12.58	21708	T12	347	639\%	1159	215	9596	ES50	50537	17.808	13,835	828	1388
	Prekerson St E of Tiermess	nemers	30722	tess	evs	60	6388	3287	589	9545	5775	6.395 \|	22728	7,655	4s6\|	227
		960,25	5582	5336	453	454	Escs	581	500	9298	5,068	987	60128	8.658	353	s00
	Tremmeat i d Pilerson	Mars5	25812	14.537	1713	2088	7308	1239	5483	2ases:	14.200	58375	125386	19,450	5420\|	15537
	NT1ELE EfN- 283noss	Mer-35	7855	7230	585	512	7358	651	42	8.515	7,005	6135	-12 280	6.328	439	565
	W4 is 9ra, N ot hasemy 0 or	Neres 36	8.515	1000	756	735	1505	881	963	30.17%	2,358	2353 \|	-450008	3.275	339\|	335
	k+293pra Not Tremears	varss	22250	12940	398	358	50\%	1231	177	\$359x	3,307	4002	-35370	5238	$4: 6$	511
		varsis	24.302	13.988	1215	1065	7.826	2338	1364	seex	12.207	7,327	40.088	8379	633]	317
		Age.3e	15623	15.830	1580	1737	E17\%	2228	1212	3215	15,008	2,330	15,60\%	29,0es	1299	$120 \cdot$
		Age-st	54.230	16.575	127	903	578	2128	1237	1305	12,128	1468	335150	29513	1312]	1535
	Foedswy mer 3ewer Sood	2xe-34	5500	5.838	511	358	7.0es	482	005	Esers	5.124	3.511	71.350	13921	271	307
		Apese	2735	2,800	159	125	5715	172	169	sirs	1,254	2999 \|	56.2008	2375	358	260
	Rassizilondondery ismilio	Ase-st	5955	7,130	407	2Ss	5.488	72	72	20.09\%	5,538	13,730	1373180	:656s	1256	1551
		20.15	23.234	12,130	1235	Ses	750\%	1176	1206	E.4\%	13, 215	12.253	-30.823	20,399	780	834
		20.25	\$,200	3,200	54,	600	817\%	345	307	3865	30,839	12,78	17900	5.571	780	
	nexat						7.118			9.788		$22, \mathrm{k}$		2,37	\cdots	Sse
-seny	NW 100, t efthenpoon or	125	31,128	31,300	3438	2ST	3288	2842	228	378						
	SW500, Eet Exic			25800	2100		7396	2505		3005	20115	32,416	5568	4.378	338	4350
	\|whseesa Doury Toun line	Merel 15	22,856	28.890	178	35es	10tx	1756	2750	757x	22383	29.504	3278	29,763	3145	3338
	SW28at Sers Town live	Nusplis	173,34	25935	2239	1238	ग278	1582	2508	930\%	15392	15,683	- -535	13,621	490	236
		See 15 \|	36.536	2esse	5037	2335	8397	1207	2710	3078	15×08	34739	4378	13,359	1291	123
		menel25	305\%	5.313	eso	658	6315	3308	589	12005	5,397	56,439	74908	17,174	1770	1138
				4512	215	215	4585	4 SE	C/5	30.065	4.742	$44^{3} 3$	17%	- 5301	1251	20.8
		J.e. 15	6502	6531	47	ess	Esas	73	583	30328	5,909	S2000	235398	15512	zove	459
	average						729\%			9315						1500
		vas-i6	20.263	3,993	435	545	4.186	1223	1599	278006	12,35s	20215	Scses6	29,484	813	2933
	bxt 4 secoram	4592. 6	20303	12005	273	1535	12388	\$12	7s\%	7328	9,550	2, 2631	123, 2580	22,43	2915	1773
	bet 453 cos	vap: 6	5 sec	3, 6×5	733	723	7588	58	933	E7cs	3.150	15.349	1235958	21.593	1625	3099
	fat 438 Cncamp 63 2053	vaple	5.300	5.177	573	505	1228\%	312	3cs	5355	4,900	12778	129, 55×8	11301	1413	520
	Ext4sa On-amp-we cosa	Mop-16	4 SET	5.688	537	505	11.125	344	23	5168	3,630	7,488	153530	9.850	2059	tus
	2erata						9.128			E13\%						
	Eat5x30tamp	Nope 15	5.745	5.5001	450	336	6ssk	472	259	827\%	2,438	5,421	45.508	33	55	665
	Fal $5 \times 30 \mathrm{comm}$	Nap 15	3.580	2341	958	552	30.1\%	73	77	3.328	2.500	13, 258 \|	58337	21.355	1612	1152
	Faks 53 Otramo	Nop-15	3×20	9282	781	750	*085	939	920	30.5	5238	13,577	47039	13,6es	1153	1353
	feit5sacomen	Mept 15	5,655	5.508	S3	cse	95S6	487	$4: 8$	7.5\%	3319	5884	50243	5,254	748	628
	avoze:						8543			358\%						
	193, south er eret 4 \|Dat Paix			71.060		5420]	1599		S*RO	8.20x	72373	123.509	54:383	215.183	8.504	5.545
	38			35700		1580	35s\%		3070	Sx15	$38 \leqslant 17$	59236	cesse	\$3,138	3.283	5.502
	58			35375		384	885s		12050	42\%	35.951	59,574	65958	53,6:0	S8501	4042
	153, buteena Exas 4 tod5			71000		5855	7348		5835	\%28s	7.152	120205	63906	179,508	5538	5.948
	s3					1930	45es		30085	sezs	35.578	50.363	63.6880	-	4.483	5.051
	53]					3312	53.65		3870	43.85	35.500	Se342	63728:	-	sess	4899
	Y-33, norbe el bxi 5			n,000		5435	12458		669	850\%	38.139	134585	65.37*	125,245	12550	12.130
	53					3200	6958		3325	4978	20,250	50, 250	57.60x	-	5.850	5,332
	33)					1225	502\%		3395	sark	40,889	50.535	65.17x	.	5,385	5,598
					Countrs	$2 \leq 52005$		Coumber	2612005		2015 NNDC	zeenwat	\%	mawat	20es	2200
				2652015	ane Peak	avPreak		PMineak	netmok	Puras	Sios Mosel	v2.3uat	Gxath	20ans	Noab	Nasa
				anmot	volume	nolume	Natawnat	valume	Volure	5 StMENST	kajes	AuFter	2685-09	nasiot	AMFX	FMP\%

